PRINCIPALS
Robert J. Michaud, P.E.
Daniel J. Mills, P.E., PTOE

MEMORANDUM

no

DATE: October 30, 2023

TO: Josh Katzen

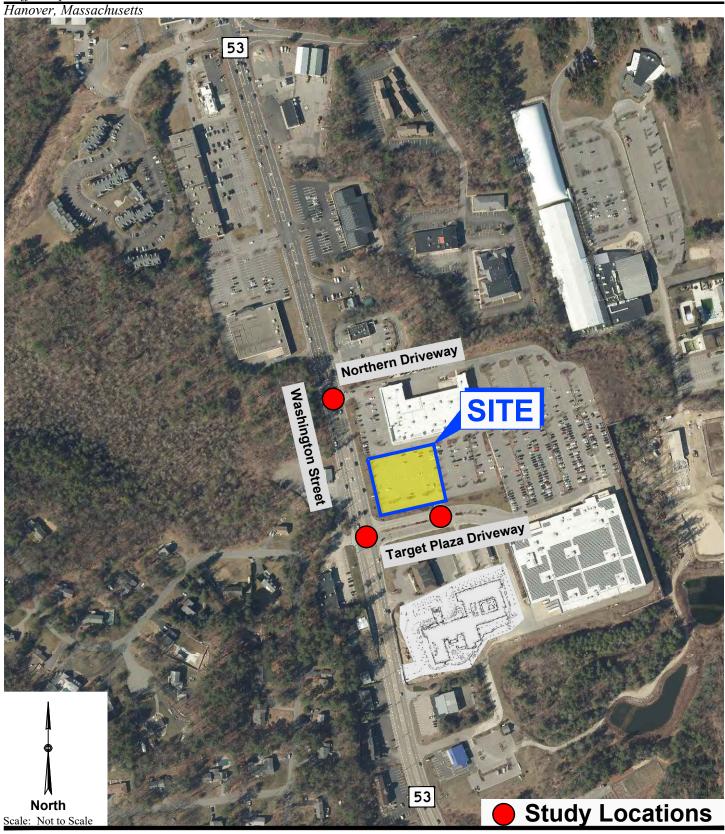
Hanover Washington Limited Partnership

625 Mt. Auburn Street, Suite 210

Cambridge, MA 02138

FROM: Robert J. Michaud, P.E. – Managing Principal

Daniel A. Dumais, P.E. - Senior Project Manager


RE: Proposed Fast-Food Restaurant with Drive-Thru (Taco Bell)

1207 Washington Street, Hanover, Massachusetts

MDM Transportation Consultants, Inc. (MDM) has prepared this traffic impact assessment (TIA) for a proposed Fast-Food Restaurant with Drive-Thru (Taco Bell) development to be located with the existing mixed-use Plaza located at 1207 Washington Street (Route 53) in Hanover, Massachusetts. The location of the site relative to the adjacent roadway network is shown in **Figure 1**. This assessment summarizes baseline traffic conditions at the Site and adjacent roadways, evaluates project trip generation, assesses site access and circulation, estimates peak parking demand characteristics, quantifies driveway operations, and provides a queue assessment of the drive through window.

Key findings of the TIA are as follows:

- □ Modest Traffic Generation. The majority of the trips will be associated with pass-by activity resulting in a nominal increase in new trips to the area. The proposed restaurant with drive-thru is estimated to generate approximately 46 new vehicle trips during the weekday morning peak hour, 32 new vehicle trips during the weekday evening peak hour and 53 new vehicle trips during the Saturday midday peak hour. This level of impact will be imperceptible to the average motorist and well with the day-to-day fluctuations of the adjacent street and Plaza.
- Adequate Roadway Capacity & Operations. The proposed development is expected to have minimal impact on the study area intersection and will not result in any notable changes in traffic operations in the study area relative to No-Build conditions. No further mitigation is required at the Plaza driveways to accommodate the restaurant with drive-thru.

Site Location

- Drive-Thru Operations. To ensure proper accounting for potential peak queuing at the window, an analysis is presented that assumes a likely/projected operating condition with average window capacity (90 transactions per hour limit based on the average speed of 40 seconds per transaction) which assumes a 65% window transaction distribution. The restaurant with drive thru is estimated to result in up to 39 trips through the drive-thru during the critical study periods, resulting in a maximum (95th percentile) 3-vehicle queue that will occur during the midday lunch period and is expected to occur from the order board position based on empirical observations. The maximum queue will be contained within the Taco Bell portion of the Plaza with no material impact to on-site circulation or parking.
- □ Adequate Parking Supply. Parking observations indicate a large parking surplus at the Site in the immediate area of the proposed restaurant with drive-thru during both a weekday and Saturday. With the project in place, the critical peak parking demand is estimated at 62 parked vehicles which will be accommodated by the proposed 86 parking space supply within the immediate area surrounding the proposed restaurant with drive-thru. The resulting 24 vacant parking spaces will result in a 28% surplus. To the extent feasible the restaurant employees should be directed to park away from more critical parking areas to allow customers to park more efficiently on-site. The total marked spaces within the Plaza will be reduced by 33± spaces and the land banked spaces will be increased to 248 to make up the difference resulting in an overall parking supply (1,150 spaces).

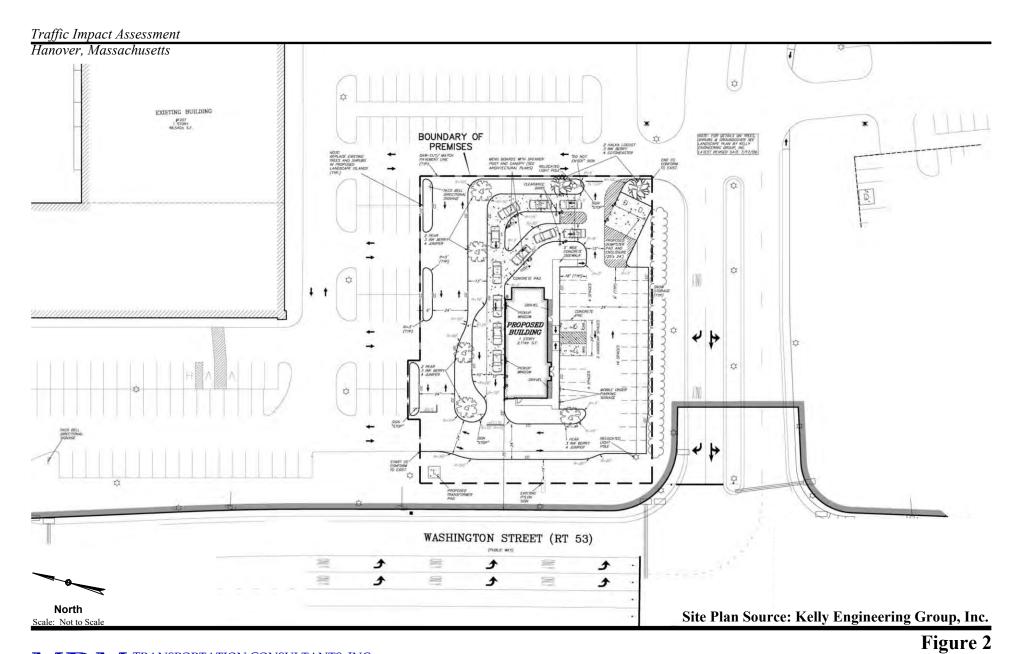
In summary, the majority of the trips will be associated with pass-by activity resulting in a nominal increase in new trips to the area. MDM finds that incremental traffic associated with the proposed development is not expected to materially impact operating conditions at the study intersections. The study intersections exhibit below-average crash rates based on historic crash data; safety countermeasures are therefore not warranted. Projected queue results for the drive-thru window will be c within the Taco Bell portion of the Plaza with no material impact to on-site circulation or parking. Parking observations and projections indicate ample parking under Build conditions in the immediate area of the proposed restaurant with drive-thru to accommodate the project during both a weekday and Saturday. Implementation of site-circulation improvements, pedestrian and bicycle improvements, and a drive-thru management plan as outlined under *Recommendations and Conclusions* will establish a framework of minimizing Site traffic impacts by encouraging non-motorized travel modes and pedestrian accommodation that is compatible with other projects in the area.

PROJECT DESCRIPTION

The project site is located at 1207 Washington Street (Route 53) in Hanover, Massachusetts. The Site consists of a mixed-use Plaza anchored by Target. The Plaza includes Target, two banks, general office, retail store, restaurants, and a Benchmark Senior Living community. The primary Plaza Driveway provides signalized access/egress to Washington Street and four (4) secondary unsignalized access/egress points along Washington Street are also provided including access/egress to the recently completed Benchmark community. The Plaza also provides internal connections to the between the various buildings. The Plaza includes a total of 1,043 marked spaces with an additional 208 spaces land banked resulting in an overall parking supply of 1,251 spaces.

Under the proposed development plan the parking area near the 1207 building will be modified to include a 2,114± sf restaurant with a dual order board drive-thru lane. The building will provide dual pick-up windows with one window dedicated to mobile pre-orders. To manage traffic flow patterns on-site and to reduce vehicular conflicts with the proposed drive-thru lanes, a one-way counterclockwise traffic flow will be established around two sides of the proposed building with bypass areas provided prior to entering the drive-thru area and adjacent to the pick-up windows. Access/egress for the Plaza will remain unchanged. The total marked spaces within the Plaza will be reduced by 33± spaces and the land banked spaces will be increased to 248 to make up the difference resulting in an overall parking supply (1,150 spaces). The preliminary site layout prepared by Kelly Engineering Group is presented in **Figure 2**.

BASELINE TRAFFIC & SAFETY CHARATERISTICS


This memorandum evaluates transportation characteristics of roadways and intersections that provide a primary means of access to the Site, and that are likely to sustain a measurable level of traffic impact from the development. The study area includes the following intersections:

- □ Washington Street (Route 53) at Target Plaza Driveway Signalized
- □ Washington Street (Route 53) at Plaza Northern Driveway Unsignalized
- □ Primary Plaza Driveway at Internal Intersection w/ Retail B/Office Unsignalized

Baseline Traffic Data

Traffic volume data were collected at the study intersections in November 2022 during the weekday morning (7:00 AM - 9:00 AM), weekday evening (4:00 PM – 6:00 PM), and Saturday midday (11:00 AM – 1:00 PM) periods to coincide with peak traffic activity of the proposed use and the adjacent streets. Review of MassDOT permanent count station data indicates that November is an average traffic month, therefore, no seasonal adjustment is required. Likewise, nearby permanent count station data published by MassDOT indicates a flat of declining

riguit 2

Preliminary Site Plan

growth rate; therefore, no adjustments are required to represent 2023 Baseline conditions. The 2023 Baseline traffic volumes for the weekday morning, weekday evening and Saturday midday peak hour traffic volumes for the study intersections are shown in **Figure 3** and **Figure 4**. Traffic count data and MassDOT permanent count station data are provided in the **Attachments**.

Daily Traffic Volumes

Daily traffic volumes along Route 53 just north of the primary signalized plaza driveway were obtained using a video-based automatic traffic recorder (ATR) in November 2022. The results of the counts are summarized in **Table 1** and are discussed below.

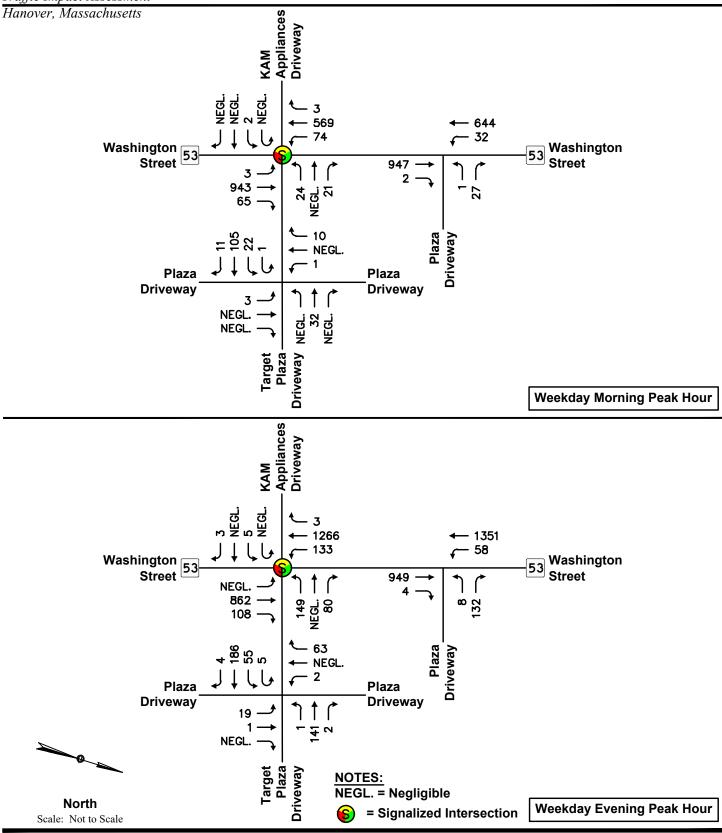
TABLE 1
BASELINE TRAFFIC VOLUME SUMMARY
ROUTE 53 NORTH OF PRIMARY SIGNALIZED PLAZA DRIVEWAY (#1207)

Time Period	Daily Volume (vpd) ¹	Percent Daily Traffic ²	Peak Hour Volume (vph) ³	Peak Flow Direction ⁴	Peak Hour Directional Volume (vph) ⁴
Weekday Morning Peak Hour	27,600	6%	1,580	60% NB	942
Weekday Evening Peak Hour	27,600	8%	2,300	61% SB	1,396
Saturday Midday Peak Hour	27,300	9%	2,540	51% SB	1,286

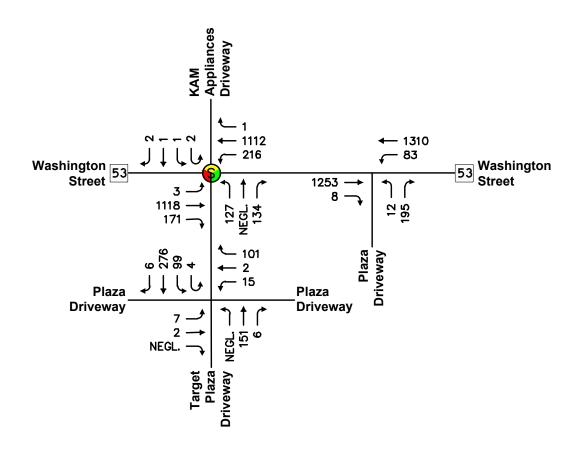
¹Two-way daily traffic expressed in vehicles per day without seasonal adjustment as counted by MDM in November 2022.

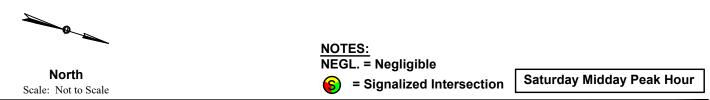
As summarized in **Table 1**, the weekday daily traffic volume on Route 53 adjacent to the Site is approximately 27,600 vehicles per day (vpd) on a weekday and approximately 27,300 vehicles per day (vpd) on a Saturday. Peak hour traffic flow on Route 53 ranges from approximately 1,6580 to 2,540 vehicles per hour (vph) representing approximately 6 to 9 percent of daily traffic flow.

Trip Generation Characteristics – 1207 Washington Street Plaza (Site)


Trip generation for the Plaza (1207 Washington Street) has been determined based on turning movement counts conducted at the Plaza driveways in November 2022 and infill of 6,800 sf of vacant retail space. **Table 2** presents the Observed trip generation characteristics of the Plaza during the study periods. The Permitted trip generation of the Plaza based on the Single Environmental Impact Report (SEIR) prepared for the Plaza in November 2007 has also been provided for reference purposes.

²The percent of daily traffic that occurs during the peak hour.


³Two-way peak-hour volume expressed in vehicles per hour as counted by MDM in April 2019.


 $^{^4\}mathrm{NB}$ = Northbound, SB = Southbound

2023 Existing Conditions Weekday Peak Hour Volumes

 $\frac{\text{TRANSPORTATION CONSULTANTS, INC.}}{\text{Planners \& Engineers}}$

Figure 4

2023 Existing Conditions Saturday Midday Peak Hour Volumes

TABLE 2
TRIP-GENERATION COMPARISON

	Permitted	Observed Plaza	
Period/Direction	Trips ¹	(Total Trips) ²	Δ
Weekday Morning Peak Hour:			
Entering	155	192	+37
<u>Exiting</u>	<u>99</u>	<u>81</u>	<u>-18</u>
Total	254	273	+19
Weekday Evening Peak Hour:			
Entering	512	327	-185
<u>Exiting</u>	<u>554</u>	<u>395</u>	<u>-159</u>
Total	1,066	722	-344
Saturday Midday Peak Hour:			
Entering	760	520	-240
<u>Exiting</u>	<u>702</u>	<u>493</u>	<u>-209</u>
Total	1,462	1,013	-449

¹Based on the SEIR prepared for the Plaza in November 2007.

As summarized in **Table 2**,

- Observed Trip Generation. With infill of 6,800 sf of vacant space at the Plaza, the current uses generate approximately 273 vehicle trips during the weekday morning peak hour, 722 vehicle trips during the weekday evening peak hour, and 1,013 vehicle trips during the Saturday midday peak hour.
- □ *Permitted Trip Generation.* Based on Permitting for the Plaza, when fully occupied the Plaza was estimated to generate approximately 254 vehicle trips during the weekday morning peak hour, 1,066 vehicle trips during the weekday evening peak hour, and 1,462 trips during the Saturday midday peak hour. The observed Plaza trips are highly consistent with those Permitted during the less critical weekday morning peak hour and significantly (approximately 30% fewer) during the weekday evening and Saturday midday peak hours.

²Based on turning movement counts conducted in November 2022 and infill of vacant Retail Trips based on LUC 820 (Shopping Center) applied to 6.8ksf prorated out of 200.7ksf.

Intersection Crash History

In order to identify crash trends and safety characteristics for study area intersections, crash data were obtained from MassDOT for the Town of Hanover for the five-year period 2017 through 2021. Crash data for the study intersections is summarized in **Table 3** with detailed data provided in the **Attachments**.

Crash rates were calculated for the study intersections as reported in **Table 3**. These rates quantify the number of crashes per million entering vehicles. MassDOT has determined the official District 5 (which includes the Town of Hanover) crash rate to be 0.57 for unsignalized intersections and 0.75 for signalized intersections. This rate represents MassDOT's "average" crash experience for District 5 communities and serves as a basis for comparing reported crash rates for the study intersections. Where calculated crash rates notably exceed the district average, some form of safety countermeasures may be warranted. A review of Highway Safety Improvement Project (HSIP) locations was also conducted.

TABLE 3 INTERSECTION CRASH SUMMARY 2017 THROUGH 2021¹

	STUDY LOCATION	
_	Route 53 at	
	Target Driveway/	
Data Category	KAM Appliances Driveway	
Traffic Control	Signalized	
Crash Rate ²	0.04	
MassDOT Avg. Rate ³	0.75	
Year:		
2017	1	
2018	0	
2019	0	
2020	1	
<u>2021</u>	<u>0</u>	
Total	2	
Туре:		
Angle	0	
Rear-End	2	
Head-On	0	
Sideswipe	0	
Single Vehicle	0	
Other/Unknown	0	
Severity:		
P. Damage Only	2	
Personal Injury	0	
Fatality	0	
Conditions:		
Dry	1	
Wet	1	
Snow	0	
Time:		
7:00 to 9:00 AM	0	
4:00 to 6:00 PM	0	
Rest of Day	2	

¹Source: MassDOT Crash Database.

²Crashes per million entering vehicles.

 $^{^{3}\}mbox{District}$ 5 Average Crash Rate.

As summarized in **Table 3**,

- □ Route 53 at Primary Plaza Driveway. A total of two (2) crashes were reported for the Route 53 signalized intersection with the Target Driveway and KAM Appliance Driveway. The resulting crash rate of 0.04 is lower than the District 5 average. The reported crashes included two (2) rear-end type collisions resulting in property-damage only, generally indicative of low-speed crashes. No fatalities or pedestrian-related incidents were reported during the study period.
- □ *Route 53 at Plaza Northern Driveway.* There were no reported crashed reported for this location during the study period.
- □ *Internal Plaza Driveway.* There were no reported crashed reported for this location during the study period.

In summary, based on extensive review of MassDOT crash data, the study intersection experienced a crash rate that is below the MassDOT District 5 average and is not listed as an HSIP location. Therefore, no additional safety countermeasures are warranted based on the review of the crash records and associated crash rates.

PROJECTED FUTURE TRAFFIC CONDITIONS

Evaluation of the proposed development impacts requires the establishment of a future baseline analysis condition. This section estimates future roadway and traffic conditions with and without the proposed development. For planning purposes, a seven-year planning horizon (year 2030) was selected consistent with standard industry practice along State Highway.

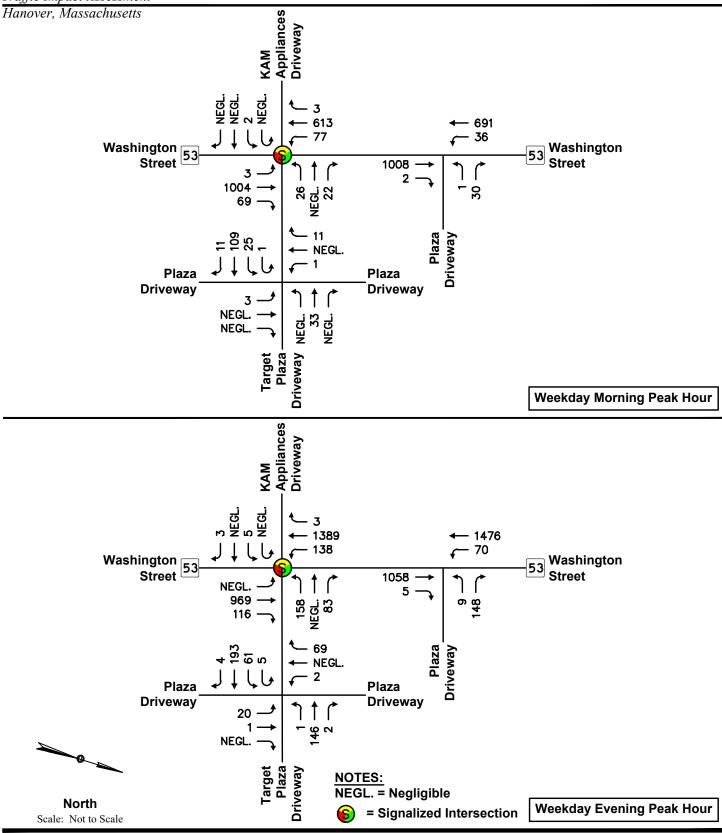
To determine the impact of site-generated traffic volumes on the roadway network under future conditions, baseline traffic volumes in the study area were projected to a future year condition. Traffic volumes on the roadway network at that time, in the absence of the development (that is, the No-Build condition), includes existing traffic, new traffic due to general background traffic growth, and traffic related to specific developments by others that are currently under review at the local and/or state level. Consideration of these factors resulted in the development of No-Build traffic volumes. Anticipated site-generated traffic volumes were then superimposed upon these No-Build traffic-flow networks to develop future Build conditions.

The following sections provide an overview of the future No-Build and Build traffic volumes.

Background Growth

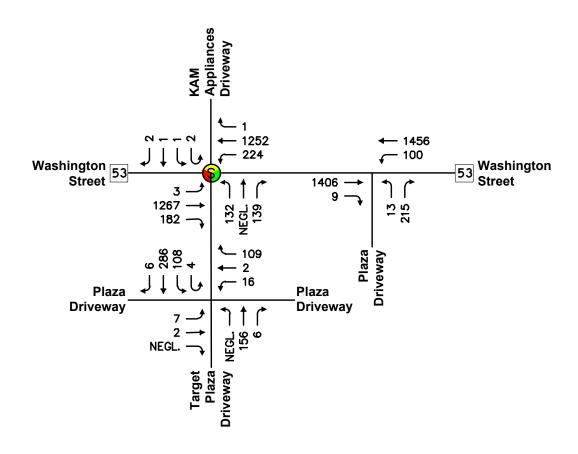
Background traffic includes demand generated by other planned developments in the area as well as demand increases caused by external factors. External factors are general increases in traffic not attributable to a specific development and are determined using historical data.

Nearby permanent count station data published by MassDOT indicates a negative (-0.7 percent per year) growth rate. For purposes of this evaluation, a 0.5-percent compounded annual growth rate was used (3.6 percent increase over a 7-year horizon). This growth rate is higher than historic rates and is also expected to account for any small fluctuation in hourly traffic as may occur from time to time in the study area and traffic associated with other potential small developments or vacancies in the area. This rate is also consistent with recent planning reports in the area. MassDOT permanent count station data and background growth calculations are provided in the **Attachments**.


Development of future No-Build traffic volumes also considers traffic generated through the study area from other specific area developments. Review of Massachusetts Environmental Policy Act (MEPA) files indicates that there are several Site-specific development projects in the area that may increase baseline traffic at the study intersections as follows:

- 1207 Washington Vacancies (Site). There is currently 6,800 sf of vacant space in the Plaza located adjacent to Aspen Dental and Dollar Tree. Trips associated with the infill of the vacant space were estimated based on ITE Trip Generation rates for a shopping center (LUC 565) applied to 6,800 sf of retail space within the larger plaza. The trips were distributed onto the roadway network based on travel patterns for the Plaza. Sitespecific trip tracings for the project are provided in the **Attachments**.
- Hanover Crossing Vacancies/Remaining Buildout. There is currently 200,000± sf of vacant or unbuilt space at Hanover Crossing and the residential component which was proposed to include 297± units is under construction. Trips associated with the infill of the vacant/unbuilt space were estimated based on the traffic study prepared for the project by Vanasse and Associates, Inc. dated May 2019. For the purposes of this report no trips have been removed for the construction-related activity at this location. Site-specific trip tracings for the project are provided in the **Attachments**.

2030 No-Build Traffic Volume Networks


In summary, to account for future traffic growth in the study area future No-Build traffic volumes are developed by increasing the Baseline (2023) volumes by approximately 3.6 percent (0.5 percent compounded annually over 7 years) as well as traffic associated with the vacancies or unbuilt portions of the Hannover Crossing which is under construction and minor vacancy at 1207 Washington Street (Site). The resulting 2030 No-Build traffic volumes are displayed in **Figure 5** and **Figure 6**.

2030 No-Build Conditions Weekday Peak Hour Volumes

TRANSPORTATION CONSULTANTS, INC.
Planners & Engineers

Figure 6

2030 No-Build Conditions Saturday Midday Peak Hour Volumes

Trip Generation

The trip generation estimates for the proposed Fast-Food Restaurant with a Drive-thru (Taco Bell) use of the Site are provided for the weekday morning, weekday evening and Saturday midday periods, which correspond to the critical analysis periods for the proposed uses and adjacent street traffic flow. While most Taco Bell restaurants do not open until after 9:00 am, to remain conservative, the analysis is provided for the weekday morning period assuming that this location offers breakfast service at a competitive level to other fast-food restaurants with a drive-thru on an industry standard basis.

New traffic generated by the project was estimated using trip rates published in ITE's *Trip Generation* for the highest land use in this category (LUC); LUC 934 – Fast-Food Restaurant with Drive-Through Window are provided in the **Attachments**.

The trip estimates were then adjusted to reflect pass-by traffic, which represents the portion of Site-generated trips that is drawn from the existing traffic stream and that is not "new" traffic to area roadways. Pass-by data as published by ITE in the *Trip Generation Manual Appendices*¹ indicates average pass-by rates of approximately 50-55 percent for a fast-food restaurant with drive-through use. While no reduction was taken to reflect internal capture rates, which represent the portion of site-generated trips that are shared between the two land uses at the Site. In this case there will be shared trips between the existing Plaza uses and the proposed restaurant with drive-thru use. Internal capture rates published in *Trip Generation Handbook*² ITE for retail to/from restaurant uses ranged from 29% to 50%. **Table 4** presents the trip-generation estimates for the proposed development based on the ITE trip generation methodology. Trip generation calculations are provided in the **Attachments**.

¹ ITE Trip Generation Appendices, Pass-By Tables, Institute of Transportation Engineers; 2022.

² *Trip Generation Handbook, 3rd Edition, Institute* of Transportation Engineers; 2017.

TABLE 4
TRIP-GENERATION SUMMARY

Period	Total Trips ¹	Pass-by Trips ²	Net New Trips
Weekday Morning Peak-Hour:			
Enter	48	24	24
<u>Exit</u>	<u>46</u>	<u>24</u>	<u>22</u>
Total	94	48	46
Weekday Evening Peak-Hour:			
Enter	36	19	17
<u>Exit</u>	<u>34</u>	<u>19</u>	<u>15</u>
Total	70	38	32
Saturday Midday Peak-Hour:			
Enter	60	32	28
<u>Exit</u>	<u>57</u>	<u>32</u>	<u>25</u>
Total	117	64	53

¹Based on ITE LUC 934 applied to 2,114 sf.

As summarized in **Table 4**, the proposed project is estimated to generate approximately 94 vehicle trips (48 entering and 46 exiting) during the weekday morning peak hour, 70 vehicle trips (36 entering and 34 exiting) during the weekday evening peak hour and 117 vehicle trips (60 entering and 57 exiting) during the Saturday midday peak hour. The majority of the trips will be associated with pass-by activity resulting in a nominal increase in new trips to the area. Specifically, the proposed project is estimated to generate approximately 46 new vehicle trips during the weekday morning peak hour, 32 new vehicle trips during the weekday evening peak hour and 53 new vehicle trips during the Saturday midday peak hour. This level of impact will be imperceptible to the average motorist and well with the day-to-day fluctuations of the adjacent street and Plaza.

<u>Trip Generation – Comparison</u>

The Permitted trip generation of the Plaza based on the Single Environmental Impact Report (SEIR) prepared for the Plaza in November 2007 was then compared to the Plaza under conditions with the infill of vacant retail space (6,800 sf) and the proposed restaurant with drive-thru in place. **Table 5** presents the Proposed trip generation characteristics of the Plaza with comparison to what was originally Permitted.

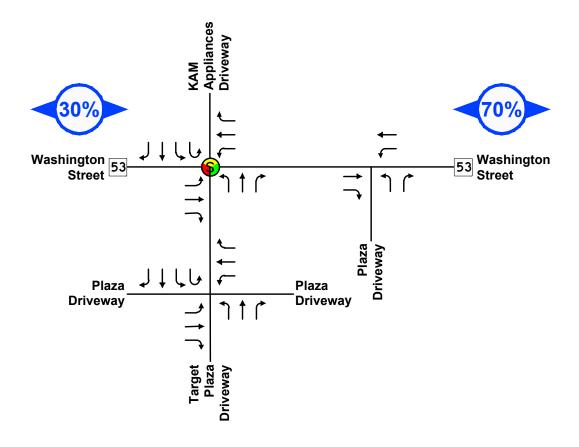
³ Estimated at 50 percent during morning periods, 55 percent during evening and Saturday periods (ITE Trip Generation Handbook).

TABLE 5
TRIP-GENERATION COMPARISON

	Permitted	Proposed	Increase
Period/Direction	Trips ¹	Total Trips ²	(Δ)
Weekday Morning Peak Hour:			
Entering	155	240	+85
<u>Exiting</u>	<u>99</u>	<u>127</u>	<u>+28</u>
Total	254	367	+113
Weekday Evening Peak Hour:			
Entering	512	363	-149
<u>Exiting</u>	<u>554</u>	<u>429</u>	<u>-125</u>
Total	1,066	792	-274
Saturday Midday Peak Hour:			
Entering	760	580	-180
<u>Exiting</u>	<u>702</u>	<u>550</u>	<u>-152</u>
Total	1,462	1,130	-332

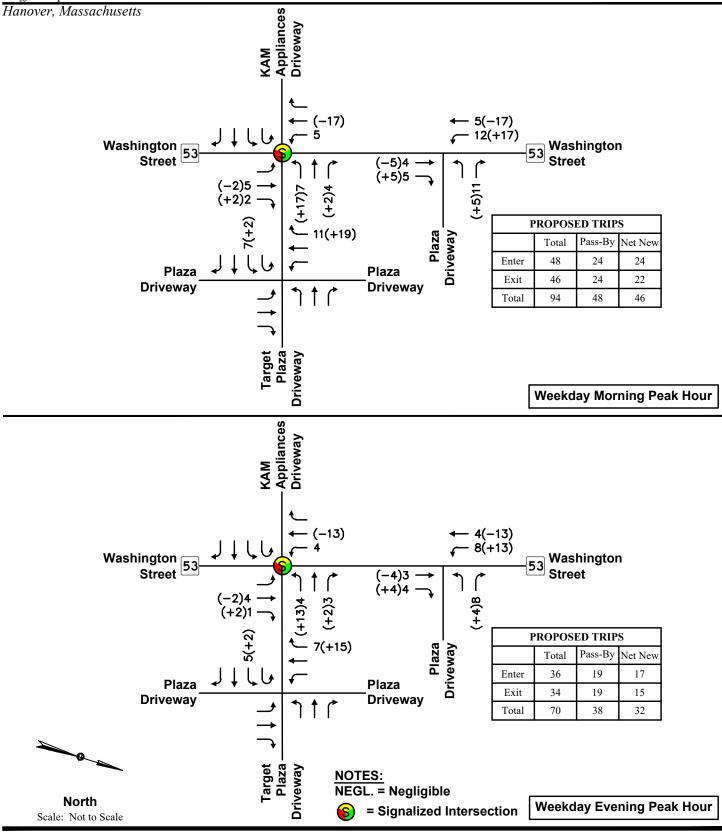
¹Based on the SEIR prepared for the Plaza in November 2007.

As summarized in **Table 5**, the Proposed Plaza with the fast-food restaurant with drive-thru in place will result in trip levels that result in a moderate increase of 113 trips compared to the Permitted Plaza during the less critical weekday morning peak hour and fewer trips (approximately 20 to 25% less) than Permitted during the weekday evening and Saturday midday peak hours. In summary the Plaza and its access/egress points have been designed to accommodate the proposed activity level.

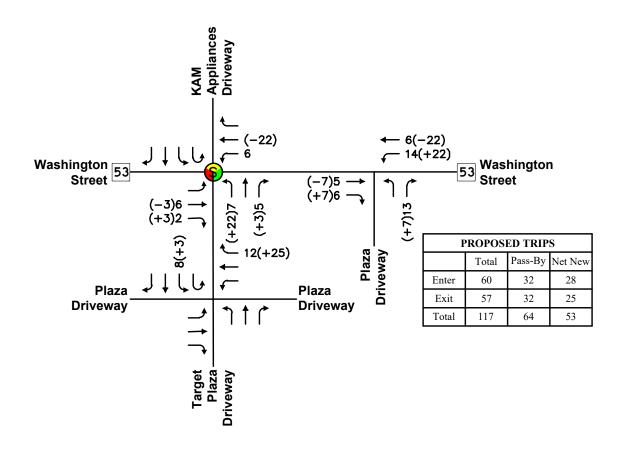

Trip Distribution

The directional distribution of development-generated trips on the roadway network is a function of a number of variables, including existing travel patterns, the efficiency of the roadways leading to the site, and population densities. Based on these patterns, the development is expected to draw 70 percent of new site trips to/from north of the site and 30 percent to/from south of the site. The specific trip distribution pattern is presented in **Figure 7**. Trip distribution calculations are provided in the **Attachments**.

New development-related trips for the proposed restaurant with drive-thru are assigned to the roadway network using the ITE trip-generation estimates shown in **Table 4** and the distribution patterns presented in **Figure 7**. Development-related trips at each intersection approach for the weekday morning, weekday evening, and Saturday midday peak hours are quantified in **Figure 8** and **Figure 9**.



²Based on turning movement counts conducted in November 2022 and infill of vacant Retail Trips based on LUC 820 (Shopping Center) applied to 6.8ksf prorated out of 200.7ksf, and ITE LUC 934 (Fast Food with drive-thru applied to 2,114 sf).



Trip Distribution

Site Generated Trips Weekday Peak Hour Volumes

MDM TRANSPORTATION CONSULTANTS, INC. Planners & Engineers

Site Generated Trips Saturday Midday Peak Hour Volumes

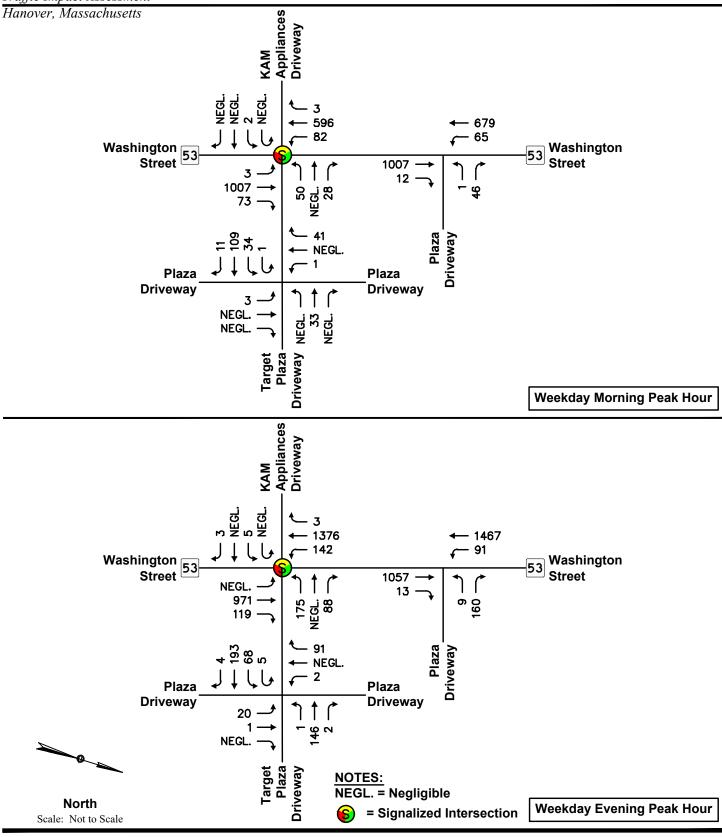
2030 Build Traffic Conditions

2030 Build condition traffic volumes are derived by adding the incremental traffic increases for the proposed restaurant with drive-thru use expansion at the Site to the 2030 No-Build conditions. **Figure 10** and **Figure 11** present the 2030 Build condition traffic-volume networks for the weekday morning, weekday evening, and Saturday midday peak hours.

OPERATIONS ANALYSIS

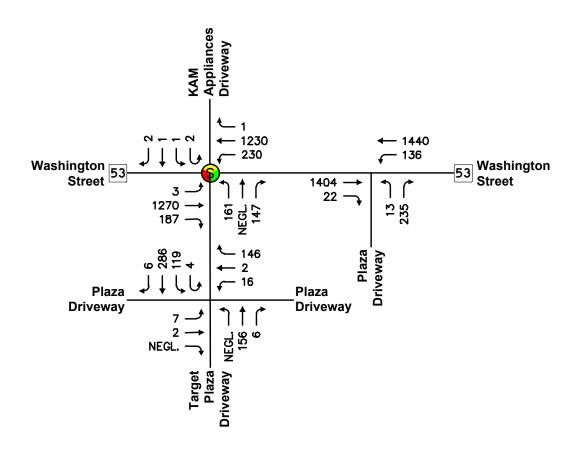
This section provides an overview of operational analysis methodology, and an assessment of intersection operations under Baseline and projected future No-Build and Build conditions.

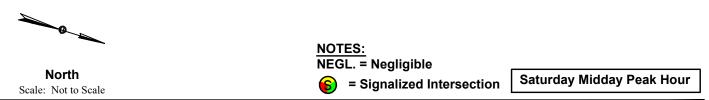
Analysis Methodology


Intersection capacity analyses are presented in this section for the Baseline, No-Build, and Build traffic-volume conditions. Capacity analyses, conducted in accordance with EEA/MassDOT guidelines, provide an index of how well the roadway facilities serve the traffic demands placed upon them. The operational results provide the basis for recommended access and roadway improvements in the following section.

Capacity analysis of intersections is developed using the Synchro® computer software, which implements the methods of the Highway Capacity Manual 6th Edition (HCM6). The resulting analysis presents a level-of-service (LOS) designation for individual intersection movements. The LOS is a letter designation that provides a qualitative measure of operating conditions based on several factors including roadway geometry, speeds, ambient traffic volumes, traffic controls, and driver characteristics. Since the LOS of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of LOS, depending on the time of day, day of week, or period of year. A range of six levels of service are defined on the basis of average delay, ranging from LOS A (the least delay) to LOS F (delays greater than 50 seconds for unsignalized movements and delays greater than 80 seconds for signalized movements). The specific control delays and associated LOS designations are presented in the **Attachments**.

Intersection Capacity Analysis Results


Level-of-Service (LOS) analyses were conducted for the No-Build and Build conditions with a comparison to the Permitted Plaza for the study intersections. The results of the intersection capacity are summarized below in **Table 6**, **Table 7**, and **Table 8**. Detailed analysis results are presented in the **Attachments**.



2030 Build Conditions Weekday Peak Hour Volumes

MDM TRANSPORTATION CONSULTANTS, INC.
Planners & Engineers

Figure 11

2030 Build Conditions Saturday Midday Peak Hour Volumes

TABLE 6
INTERSECTION CAPACITY ANALYSIS RESULTS
WEEKDAY MORNING PEAK HOUR

		20	30 No-Bui	ild		2030 Build	i	Pe	rmitted Pl	aza
Intersection	Approach	v/c1	Delay ²	LOS ³	v/c	Delay	LOS	v/c	Delay	LOS
Route 53 at	Eastbound	0.01	34	С	0.01	32	С	0.00	28	С
Primary Plaza Dwy/	Westbound	0.15	20	В	0.31	25	С	0.21	18	В
KAM Appliances Dwy	Northbound	0.47	8	A	0.50	10	В	0.50	7	A
	Southbound	0.22	<u>6</u>	<u>A</u>	0.23	<u>7</u>	<u>A</u>	<u>0.2</u> 0	<u>5</u>	<u>A</u>
	OVERALL	0.47	8	A	0.50	10	В	0.50	7	A
Route 53 at	Westbound	0.08	14	В	0.12	15	В	n/a	n/a	n/a
Northern Driveway	Northbound	0.00	<5	A	0.00	<5	A	n/a	n/a	n/a
•	Southbound	0.07	<5	A	0.12	<5	A	n/a	n/a	n/a
Primary Plaza Dwy at	Eastbound	0.02	<5	A	0.03	<5	A	n/a	n/a	n/a
Internal Intersection	Westbound	0.00	<5	A	0.00	<5	A	n/a	n/a	n/a
	Northbound	0.01	11	В	0.01	11	В	n/a	n/a	n/a
	Southbound	0.02	9	A	0.06	9	A	n/a	n/a	n/a

¹ Volume-to-capacity ratio

TABLE 7
INTERSECTION CAPACITY ANALYSIS RESULTS
WEEKDAY EVENING PEAK HOUR

		20	030 No-Bui	ild		2030 Build	<u> </u>	Pe	rmitted Pl	aza
Intersection	Approach	v/c¹	Delay ²	LOS ³	v/c	Delay	LOS	v/c	Delay	LOS
Route 53 at	Eastbound	0.02	24	С	0.02	<5	A	0.06	24	С
Primary Plaza Dwy/	Westbound	0.64	34	C	0.68	36	D	0.75	32	C
KAM Appliances Dwy	Northbound	0.58	18	В	0.59	18	В	0.69	19	В
	Southbound	0.53	<u>10</u>	<u>A</u>	0.53	<u>10</u>	<u>B</u>	0.68	<u>13</u>	<u>B</u>
	OVERALL	0.64	15	В	0.68	15	В	0.75	18	C
Route 53 at	Westbound	0.47	24	С	0.37	17	С	0.58	12	В
Northern Driveway	Northbound	0.00	<5	A	0.00	<5	A	0.02	<5	A
-	Southbound	0.12	<5	A	0.15	6	A	0.57	<5	A
Primary Plaza Dwy at	Eastbound	0.05	<5	A	0.06	<5	A	n/a	n/a	n/a
Internal Intersection	Westbound	0.00	<5	A	0.00	<5	A	n/a	n/a	n/a
	Northbound	0.06	14	В	0.06	15	В	n/a	n/a	n/a
	Southbound	0.09	9	A	0.12	9	A	n/a	n/a	n/a

¹Volume-to-capacity ratio

² Average control delay per vehicle (in seconds)

 $^{^3}$ Level of service

 $^{^4}$ n/a = not applicable

² Average control delay per vehicle (in seconds)

³Level of service

 $^{^4}$ n/a = not applicable

TABLE 8
INTERSECTION CAPACITY ANALYSIS RESULTS
SATURDAY MIDDAY PEAK HOUR

		20	30 No-Bui	ild		2030 Build	l	Pe	rmitted Pl	aza
Intersection	Approach	v/c¹	Delay ²	LOS ³	v/c	Delay	LOS	v/c	Delay	LOS
Route 53 at	Eastbound	0.01	26	С	0.02	28	С	0.06	26	С
Primary Plaza Dwy/	Westbound	0.60	29	С	0.68	32	С	0.92	45	D
KAM Appliances Dwy	Northbound	0.74	18	В	0.76	19	В	0.94	33	C
	Southbound	0.50	<u>13</u>	<u>B</u>	0.50	<u>13</u>	<u>B</u>	0.96	<u>24</u>	<u>C</u>
	OVERALL	0.74	17	В	0.68	18	В	0.96	31	C
Route 53 at	Westbound	0.69	35	D	0.75	41	Е	0.74	12	В
Northern Driveway	Northbound	0.00	<5	A	0.00	<5	A	0.02	<5	A
•	Southbound	0.24	8	A	0.33	8	A	0.54	<5	A
Primary Plaza Dwy at	Eastbound	0.09	<5	A	0.10	<5	A	n/a	n/a	n/a
Internal Intersection	Westbound	0.00	<5	A	0.00	<5	A	n/a	n/a	n/a
	Northbound	0.04	18	C	0.04	20	C	n/a	n/a	n/a
	Southbound	0.19	11	В	0.23	11	В	n/a	n/a	n/a

¹Volume-to-capacity ratio

As summarized in **Table 6**, **Table 7**, and **Table 8**:

- □ Route 53 at Primary Plaza Driveway/KAM Appliance Driveway. Under -Build conditions the signalized Route 53 at the Primary Plaza Driveway/ KAM Appliance driveway will continue to operate below capacity at LOS B or better during the peak hours. Furthermore, all of the approaches will continue to operate at LOS D or better during peak hours.
- Route 53 at Northern Plaza Driveway. Under Build conditions the unsignalized northern plaza driveway approach to Route 53 will operate below capacity at LOS E or better during the peak hours. The Route 53 northbound and southbound approaches to the intersection will operate unimpeded at LOS A during the peak hours.
- Primary Plaza Driveway at Internal Intersection. Build conditions the Internal Intersection along the Primary Plaza Drive will continue to operate well below capacity with LOS C or better operations for the internal roadways and unimpeded at LOS A along the Primary Plaza Driveway during the peak hours.

In summary, the proposed development is expected to have minimal impact on the study area intersection and will not result in any notable changes in traffic operations in the study area relative to No-Build conditions. No further mitigation is required at the Plaza driveways to accommodate the restaurant with drive-thru.

² Average control delay per vehicle (in seconds)

³Level of service

 $^{^4}$ n/a = not applicable

DRIVE-THRU OPERATIONS

The 2,114± sf restaurant will include a dual order board drive-thru lane. The building will provide dual pick-up windows with one window dedicated to mobile pre-orders. Circulation around the building will be one-way counter-clockwise around the building to facilitate operation of the drive-through window. Vehicle queue analysis was conducted for the drive-through window to identify likely average and maximum queuing during the peak study periods. The analysis utilizes a standard queue algorithm and standard drive-through window processing times for a coffee shop.

Drive-through trips represent between 54% and 71% with an average of 65% total peak hourly transactions for a fast-food restaurant with a drive-thru window based on industry standards for various uses. Typical transaction times vary for fast food restaurants with drive-thru windows with the typical range of 30 to 50 seconds per transaction. Based on operational data for a Taco Bell with drive-thru use, window transaction times generally average approximately 40 seconds per transaction during peak periods, representing a peak throughput capacity of up to 90 vehicles per hour. To ensure proper accounting for potential peak queuing at the window, an analysis is presented that assumes a likely/projected operating condition with average window capacity (90 transactions per hour limit based on the average speed of 40 seconds per transaction) which assumes a 65% window transaction distribution.

The queuing results are summarized for the drive-through in **Table 9**; tabulated results and supporting queue calculations are provided in the **Attachments**.

TABLE 9
PROJECTED DRIVE-THROUGH CHARACTERISTICS

	Res	taurant w/ Drive-T	hru
Period	Volume	Average Queue	Max Queue
Weekday Morning Peak Hour	32	1	2
Weekday Evening Peak Hour	24	1	2
Saturday Midday Peak Hour	39	1	3

¹Based on ITE LUC 934 applied to 2,114 sf and 65% of entering volume and 40 seconds per transaction.

As presented in **Table 9**, projected queue results indicate a maximum (95th percentile) queue of 3 vehicles or less during peak hours for the drive-thru window. For the purposes of a Taco Bell, the maximum 3-vehicle queue will occur during the midday lunch period and is expected to occur from the order board position based on empirical observations. The maximum queue will be contained within the Taco Bell portion of the Plaza with no material impact to on-site circulation or parking. Recommendations are summarized under *Recommendations and* Conclusions to enhance on-site queue storage and circulation.

PARKING ASSESSMENT

The proposed restaurant with drive-thru will be supported by a 24-space parking field immediately surrounding the building and more than 100 additional shared parking spaces in that section of the Plaza. MDM conducted parking observations at the existing Plaza, which includes a parking supply of 119 spaces in the portion of the lot proposed to include a fast-food restaurant with drive-thru window. This section provides a summary of observed peak parking demand and projected peak parking demand with the restaurant with drive-thru window in place.

Observed Peak Parking Demand

MDM conducted parking observations within the existing Plaza in the area of the proposed restaurant with drive-thru window, which includes a parking supply of 119 spaces. The existing parking layout is presented in **Figure 12** and is divided into parking zones for inventory purposes. Observations of peak parking activity was conducted over a 72-hour period on Thursday, November 17, 2022, Friday November 18, 2022, and Saturday, November 19, 2017. These time periods correspond to the peak demand period for various restaurants with drive-thru window uses. Parking accumulation survey results for the study periods are provided in the **Attachments** and have been adjusted to infill the vacant retail space (6,800) based on ITE's 85th percentile peak parking rates. The resulting No-Build parking characteristics for the study area are shown in **Figure 13**:

- Weekday Peak Parking Demand. A peak parking demand of 47± spaces was observed on both a Thursday and Friday during the midday period (1:00 pm) resulting in a parking surplus of 72 spaces (61%) within the parking field near the proposed restaurant with drive-thru.
- Saturday Peak Parking Demand. A peak parking demand of 42± spaces was observed on a Saturday during the midday period (12:00 1:00 pm) resulting in a parking surplus of 77 spaces (65%) within the parking field near the proposed restaurant with drive-thru.

In summary, observations indicate a large parking surplus at the Site in the immediate area of the proposed restaurant with drive-thru during both a weekday and Saturday. The detailed parking observations are included in the **Attachments**.

Projected Fast-Food Restaurant w/ Drive-Thru Peak Parking Demand

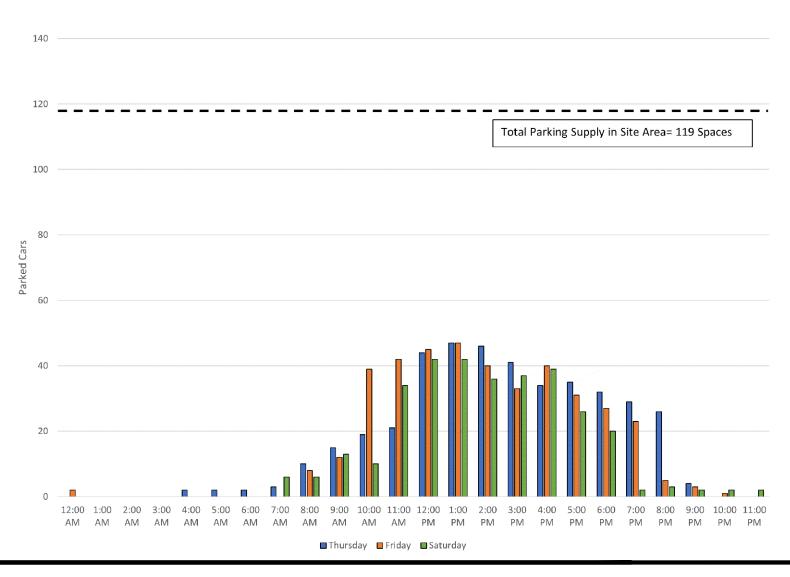

Projected peak parking demands at the site are evaluated based on the observed parking demand at the Site with the addition of trips associated with the proposed 2,114 sf restaurant with drive-thru use.

Figure 12

No-Build Parking Demand By Hour

Peak parking generation rates for restaurant with drive-thru uses are published by the Institute of Transportation Engineers (ITE) in *Parking Generation*³, which provides a basis for identifying parking demand characteristics for developments. These parking rates represent peak characteristics for each land use type as "stand-alone" uses that have differing peak parking periods. **Table 10** provides a summary of unadjusted peak parking demands for the proposed 28 seat restaurant with drive-thru use. For the purposes of this report the fast-food with drive-thru rates and hourly distribution were used as the align with the critical peak parking period for the plaza (midday). The ratios provided also account for average visitor and employee parking activity. ITE Parking data for the is provided in the **Attachments**.

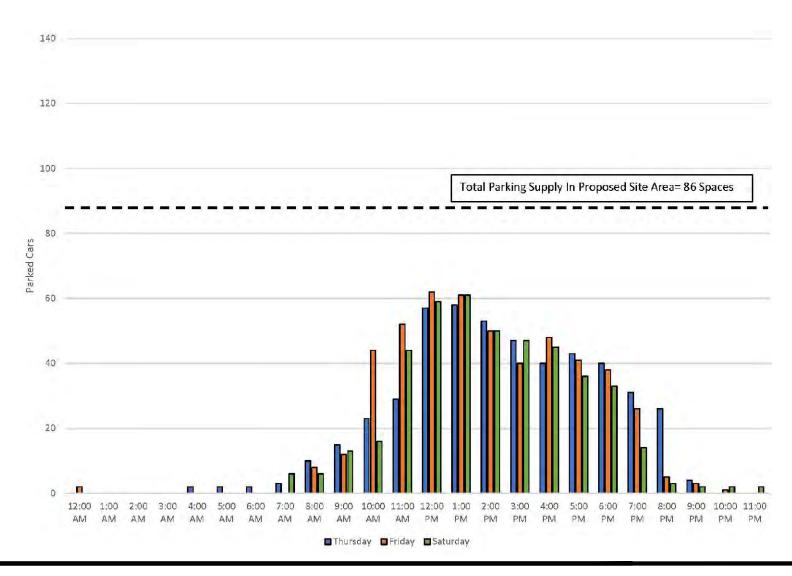
TABLE 10 PEAK PARKING DEMAND – ITE BASIS

Source	Fast Food w/ Drive-Thru²
Weekday	13
Friday	17
Saturday	19

¹Peak Parking Demand in vehicles.

As summarized in **Table 10**, the peak parking demand for the proposed 28 seat restaurant with drive through use ranges from 13 to 19 vehicles based on ITE empirical parking generation rates with peak demands occurring during midday periods (lunch) for a typical fast-food restaurant.

Build Conditions


Under Build conditions, the total marked spaces within the Plaza will be reduced by 33± spaces and the land banked spaces will be increased to 248 to make up the difference resulting in no change in the overall parking supply (1,150 spaces). The Plaza in the area of the proposed fast-food restaurant with drive-thru window, will be reduced from 119 spaces to 86 spaces. The projected restaurant with drive-thru parking demand was added to the No-Build hourly parking demands to create a Build parking graphic as shown in **Figure 14**.

In summary, the critical peak parking demand for the area of the plaza is estimated at 69 parked vehicles which will be accommodated by the proposed 86 parking space supply within the immediate area surrounding the proposed restaurant with drive-thru. The surplus is estimated at 24 spaces in the immediate area which results in a 28% surplus. MDM notes that additional parking will also be available within the plaza including land banked spaces if needed. MDM recommends that the restaurant employees be directed to park away from more critical parking areas to allow customers to park more efficiently on-site.

^{285th} Percentile peak parking rate per ITE LUC 934 (Fast-Food Restaurant with Drive-Through Window) applied to 28 seats.

³ Parking Generation, 5th Edition, Institute of Transportation Engineers, Washington D.C. 2019.

Build Parking Demand By HourWith Fast Food Restaurant Added

CONCLUSIONS

In summary, the majority of the trips will be associated with pass-by activity resulting in a nominal increase in new trips to the area. The proposed restaurant with drive-thru is estimated to generate approximately 46 new vehicle trips during the weekday morning peak hour, 32 new vehicle trips during the weekday evening peak hour and 53 new vehicle trips during the Saturday midday peak hour. This level of impact will be imperceptible to the average motorist and well with the day-to-day fluctuations of the adjacent street and Plaza. Adequate capacity is available along Route 53 to accommodate the traffic increases that may occur at the Site driveways under proposed conditions. Projected queue results for the drive-thru window indicate a maximum (95th percentile) 3-vehicle queue will occur during the midday lunch period and is expected to occur from the order board position based on empirical observations. The maximum queue will be contained within the Taco Bell portion of the Plaza with no material impact to on-site circulation or parking. Parking observations indicate a large parking surplus at the Site in the immediate area of the proposed restaurant with drive-thru during both a weekday and Saturday. With the project in place, the critical peak parking demand for the that area of the plaza is estimated at 62 parked vehicles which will be accommodated by the proposed 86 parking space supply within the immediate area surrounding the proposed restaurant with drive-thru. The parking surplus under Build conditions is estimated at 24 spaces in the immediate area which results in a 28% surplus.

MDM recommends the following site circulation improvements and pedestrian and bicycle accommodations to enhance operations, safety, and on-site traffic flow:

Site Circulation Improvements

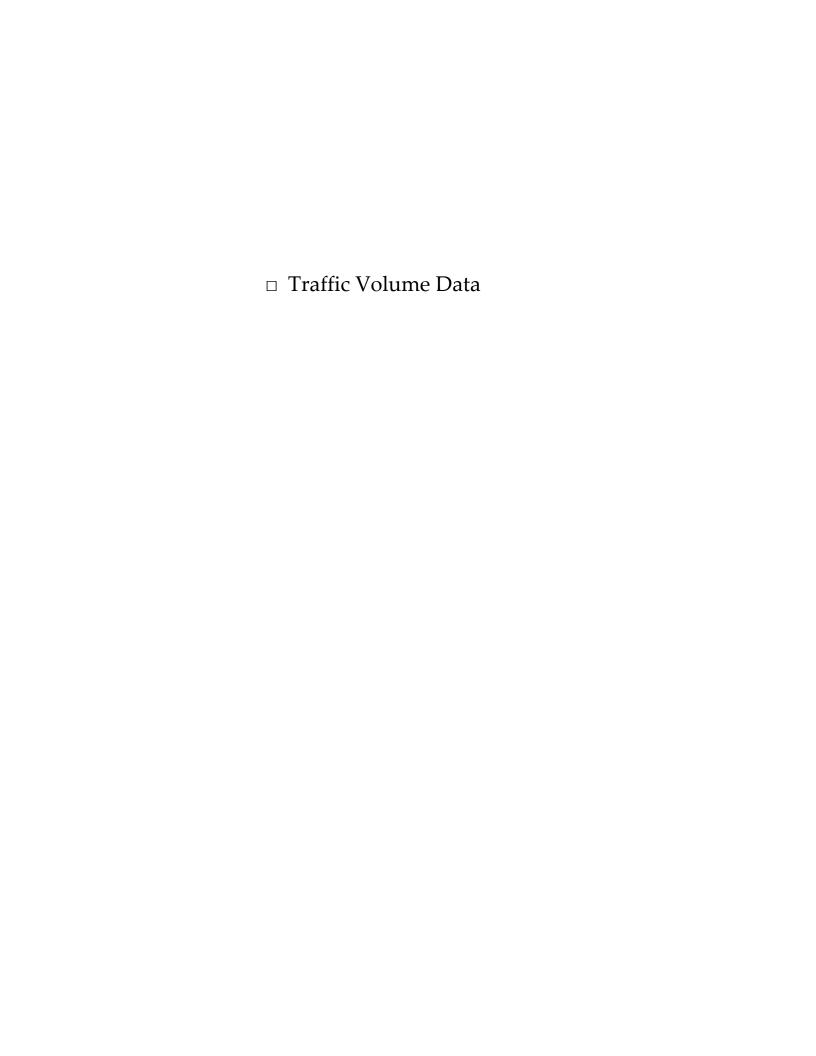
- □ *By-Pass Accommodations*. The site has been designed to provide the ability to by-pass the dedicated drive-thru lanes back to the main parking field and Plaza. A bypass area will also be provided adjacent to the pick-up windows to accommodate the expected quicker mobile order transactions.
- □ Pavement Markings & Signs. Provide pavement markings and signage to promote the one-way counterclockwise operations, drive-thru lane, and on-site restrictions. A STOP sign (R1-1) and STOP line pavement marking are included on the site plan for the drive-thru area exit back into the parking field. Likewise, Do Not Enter signs (R5-1) are included facing the main parking field and for the end of the drive-thru lane. The signs and pavement markings shall conform to Manual on Uniform Traffic Control Devices (MUTCD) standards.

□ *Design Vehicle Accommodations.* The Site should be designed to accommodate the largest anticipated delivery vehicle including trash removal operations. The site layout should also be designed to accommodate the largest emergency vehicle (ladder truck).

Pedestrian and Bicycle Accommodations

- □ *Pedestrian Accommodation.* The design incorporates sidewalks that connect the proposed building entrances with the primary parking area. To the maximum extent feasible the sidewalk should connect to the existing sidewalks within the retail plaza.
- □ *Bicycle Amenities*. The Proponent should incorporate bicycle racks near the buildings entranceways to encourage and facilitate this mode of transportation to/from the Site.

Drive-Thru Management Plan


Drive-Thru Management Plan. The operator should confirm that the window will be properly staffed and managed during peak demand periods to meet applicable processing times and commit to monitoring actual drive-through demand and queuing to ensure impacts to site circulation are avoided. To the extent needed the facility should enhance staffing/management of the drive-through window to minimize processing times and associated vehicle queuing, and designation of parking for drive-through patrons whose orders may be lengthy and require additional processing time. Likewise, designated parking for employees should be provided in areas where longer-term parking (i.e., lower turnover spaces) are preferred within the Site to facilitate higher turnover patron accommodation.

In summary, MDM finds that incremental traffic associated with the proposed development is not expected to materially impact operating conditions at the study intersections. The study intersections exhibit below-average crash rates based on historic crash data; safety countermeasures are therefore not warranted. Implementation of site-circulation improvements, pedestrian and bicycle improvements, and a drive-thru management plan will establish a framework of minimizing Site traffic impacts by encouraging non-motorized travel modes and pedestrian accommodation that is compatible with other projects in the area.

ATTACHMENTS

- □ Traffic Volume Data
- $\hfill\Box$ Seasonal/ Yearly Growth Data
- □ Crash Data
- □ Background Growth Data
- □ Trip Generation
- □ Capacity Analysis
- □ Drive-Thru Queue Calculations
- □ Parking Calculations

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 Just South of Northern Site Driveway Hanover, MA Thursday Volumes

Site Code: 1247 Station ID: 1247

Start	17-Nov-22	North			Totals		bound		Totals	Combine	
Time	Thu	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afterno
12:00		5	241			22	267				
12:15		8	269			9	279				
12:30		4	224			13	284				
12:45		3	242	20	976	3	285	47	1115	67	20
01:00		3	213			6	274				
01:15		3	236			6	271				
01:30		1	212			8	251				
01:45		2	258	9	919	1	330	21	1126	30	2
02:00		4	194	-		6	294				
02:15		4	213			6	260				
02:30		4	200			7	310				
02:45		1	213	13	820	3	310	22	1174	35	1
03:00		12	239			2	288				
03:15		4	239			2	329				
03:30		10	194			1	345				
03:45		13	243	39	915	5	355	10	1317	49	2
04:00		19	220	39	313	5	352	10	1317	73	
04:00		25	229			3	361				
04:13		25 55	239			6	354				
04:45		55 73	214	172	902	5	329	19	1396	191	2
		13		172	902			19	1390	191	
05:00		124	279			10	335				
05:15		125	219			9	336				
05:30		106	175	400	000	19	287	00	4000		
05:45		135	193	490	866	25	274	63	1232	553	2
06:00		146	186			25	278				
06:15		132	162			50	265				
06:30		162	143		0.10	56	202				
06:45		198	121	638	612	81	189	212	934	850	1
07:00		233	135			64	212				
07:15		262	128			109	196				
07:30		243	106			113	159				
07:45		251	95	989	464	146	161	432	728	1421	1
08:00		198	113			156	151				
08:15		252	84			162	174				
08:30		240	85			143	128				
08:45		252	77	942	359	179	109	640	562	1582	
09:00		198	57			172	121				
09:15		224	58			197	78				
09:30		206	35			195	64				
09:45		230	55	858	205	184	67	748	330	1606	
10:00		232	47			196	75				
10:15		195	38			189	49				
10:30		229	20			225	48				
10:45		243	18	899	123	225 234	36	844	208	1743	
11:00		231	25			228	42				
11:15		221	19			263	28				
11:30		251	14			234	45				
11:45		257	16	960	74	289	19	1014	134	1974	
Total		6029	7235	- 000		4072	10256	1011	107	10101	17
Percent		45.5%	54.5%			28.4%	71.6%			36.6%	63
Total		6029	7235			4072	10256			10101	17
Percent		45.5%	54.5%			28.4%	71.6%			36.6%	63
ombined											
JIIIDIIIEU		132	264			14	328			275	592

MDM Transportation Consultants, Inc. 28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 Just South of Northern Site Driveway Hanover, MA Saturday Volumes

Site Code: 1247 Station ID: 1247

Start	19-Nov-22	North			Totals		bound		Totals	Combine	
Time	Sat	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoor
12:00		12	343			27	320				
12:15		5	317			20	323				
12:30		9	290			21	315				
12:45		6	301	32	1251	19	328	87	1286	119	253
01:00		5 4	304			24	311				
01:15			289			11	328				
01:30		3	272			7	335				
01:45		7	299	19	1164	17	335	59	1309	78	247
02:00		6	300			2 2	329				
02:15		7	300			2	331				
02:30		1	271			5	317				
02:45		4	249	18	1120	7	304	16	1281	34	240
03:00		5	231			7	288				
03:15		1	234			6	285				
03:30		3	234			4	291				
03:45		4	239	13	938	8	307	25	1171	38	210
04:00		11	256			0	272				
04:15		13	266			10	267				
04:30		12	230			1	258				
04:45		21	202	57	954	2	272	13	1069	70	202
05:00		30	226			6	221				
05:15		28	213			11	206				
05:30		37	162			9	226				
05:45		44	196	139	797	15	219	41	872	180	160
06:00		36	184			22	223				
06:15		60	161			16	195				
06:30		64	144			28	191				
06:45		85	131	245	620	55	187	121	796	366	141
07:00		86	118			29	139				
07:15		104	97			74	156				
07:30		109	97			66	130				
07:45		110	90	409	402	115	119	284	544	693	94
08:00		162	85	.00	.02	123	135		• • • • • • • • • • • • • • • • • • • •	000	•
08:15		189	89			138	110				
08:30		163	80			182	118				
08:45		181	73	695	327	227	73	670	436	1365	76
09:00		216	97	000	021	203	109	0.0	.00	1000	
09:15		219	62			249	105				
09:30		248	57			238	83				
09:45		239	55	922	271	274	78	964	375	1886	6
10:00		258	43	JZZ	211	288	70	304	373	1000	0.
10:15		283	23			250	67				
10:13		273	41			284	66				
10:45		274	40	1088	147	333	56	1155	259	2243	40
11:00		340	34	1000	177	311	53	1133	200	2240	71
44.45		0.40	35			004					
11:15 11:30		310 297	28			301	44 46				
11:45		299	20	1246	117	340	44	1255	187	2501	30
				1240	117			1200	101		
Total		4883	8108			4690	9585			9573	1769
Percent		37.6%	62.4%			32.9%	67.1%			35.1%	64.9
Total		4883	8108			4690	9585			9573	1769
Percent		37.6%	62.4%			32.9%	67.1%			35.1%	64.9
ombined Total		129	991			14	275			272	266

28 Lord Road, Suite 280 Marlborough, MA, 01752

E/W: Internal Plaza Road File Name : 1247_Plaza_Driveway_at_Internal_11-17-2022

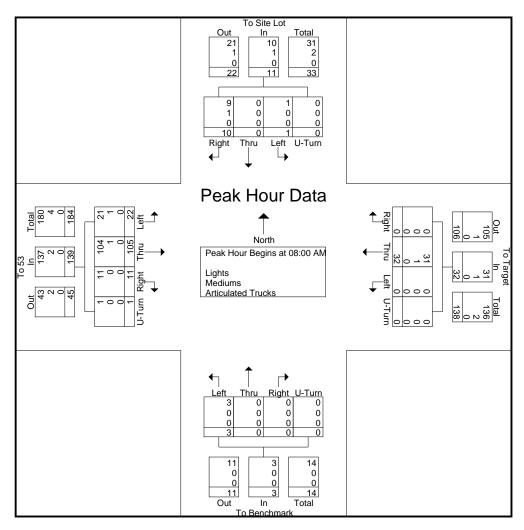
NB: From Benchmark Site Code : 1247

SB: From Site Area Start Date : 11/17/2022

Hanover, MA Page No : 1

		Т	o Site	Lot			T	o Tar		10 1010	aidinis_		Bench	mark	<u> </u>			To 53	1		
			om No				F	rom E	ast				om So				Fi	om W			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Tum	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
07:00 AM	1	0	0	0	1	0	1	0	0	1	0	0	0	0	0	1	1	0	0	2	4
07:15 AM	0	0	0	0	0	0	1	0	0	1	0	0	1	0	1	1	2	0	0	3	5
07:30 AM	1	0	0	0	1	0	1	0	0	1	0	0	0	0	0	1	7	3	0	11	13
07:45 AM	0	0	0	0	0	0	5	0	0	5	0	0	1	0	1	1	18	3	0	22	28
Total	2	0	0	0	2	0	8	0	0	8	0	0	2	0	2	4	28	6	0	38	50
08:00 AM	3	0	0	0	3	0	3	0	0	3	0	0	0	0	0	3	25	4	0	32	38
08:15 AM	1	0	1	0	2	0	5	0	0	5	0	0	0	0	0	2	17	1	1	21	28
08:30 AM	2	0	0	0	2	0	11	0	0	11	0	0	2	0	2	3	29	9	0	41	56
08:45 AM	4	0	0	0	4	0	13	0	0	13	0	0	1	0	1	3	34	8	0	45	63
Total	10	0	1	0	11	0	32	0	0	32	0	0	3	0	3	11	105	22	1	139	185
04:00 PM	9	0	1	0	10	0	28	0	0	28	0	0	2	0	2	1	51	14	1	67	107
04:15 PM	11	Ő	1	Ö	12	0	34	0	Ö	34	ő	0	2	0	2	1	52	12	2	67	115
04:30 PM	20	Ö	0	Ö	20	0	37	0	Ö	37	0	0	7	0	7	2	56	17	0	75	139
04:45 PM	10	Ö	1	0	11	1	33	1	0	35	0	1	4	0	5	1	30	9	2	42	93
Total	50	0	3	0	53	1	132	1	0	134	0	1	15	0	16	5	189	52	<u>_</u>	251	454
						'					_									- '	
05:00 PM	22	0	0	0	22	1	37	0	0	38	0	0	6	0	6	0	48	17	1	66	132
05:15 PM	12	0	0	0	12	0	31	0	0	31	0	0	0	0	0	0	38	8	1	47	90
05:30 PM	11	0	1	0	12	1	18	0	0	19	0	0	3	0	3	0	39	11	0	50	84
_05:45 PM	7	0	2	0	9	2	34	0	0	36	0	0	1	0	1	0	44	13	1	58	104
Total	52	0	3	0	55	4	120	0	0	124	0	0	10	0	10	0	169	49	3	221	410
											ı									1	
Grand Total	114	0	7	0	121	5	292	1	0	298	0	1	30	0	31	20	491	129	9	649	1099
Apprch %	94.2	0	5.8	0		1.7	98	0.3	0		0	3.2	96.8	0		3.1	75.7	19.9	1.4		
Total %	10.4	0	0.6	0	11	0.5	26.6	0.1	0	27.1	0	0.1	2.7	0	2.8	1.8	44.7	11.7	0.8	59.1	
Lights	113	0	7	0	120	5	287	1	0	293	0	1	30	0	31	20	484	127	9	640	1084
<u>% Lights</u>	99.1	0	100	0_	99.2	100	98.3	100	0	98.3	0	100	100	0	100	100	98.6	98.4	100	98.6	98.6
Mediums	1	0	0	0	1	0	4	0	0	4	0	0	0	0	0	0	5	2	0	7	12
% Mediums	0.9	0	0_	0	0.8	0	1.4	0	0	1.3	0	0	0	0	0	0	1_	1.6	0	1.1	1.1
Articulated Trucks	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	3
% Articulated Trucks	0	0	0	0	0	0	0.3	0	0	0.3	0	0	0	0	0	0	0.4	0	0	0.3	0.3

28 Lord Road, Suite 280 Marlborough, MA, 01752


E/W: Internal Plaza Road File Name : 1247_Plaza_Driveway_at_Internal_11-17-2022

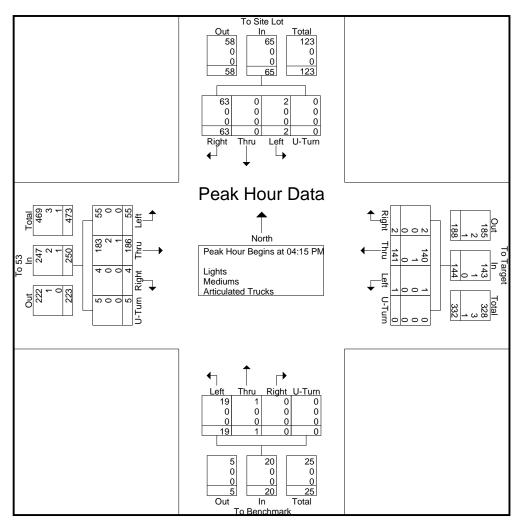
NB: From Benchmark Site Code : 1247

SB: From Site Area Start Date: 11/17/2022

Hanover, MA Page No : 2

			Site				Т	o Tar	get				Bench					To 53			
		Fr	om No	orth			F	rom E	ast			Fr	om So	outh			Fı	rom W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	AM to	11:45 A	M - Pو	eak 1 d	of 1													
Peak Hour fo	r Entir	e Inter	section	n Begin	s at 08	:00 AM	1														
08:00 AM	3	0	0	0	3	0	3	0	0	3	0	0	0	0	0	3	25	4	0	32	38
08:15 AM	1	0	1	0	2	0	5	0	0	5	0	0	0	0	0	2	17	1	1	21	28
08:30 AM	2	0	0	0	2	0	11	0	0	11	0	0	2	0	2	3	29	9	0	41	56
08:45 AM	4	0	0	0	4	0	13	0	0	13	0	0	1	0	1	3	34	8	0	45	63
Total Volume	10	0	1	0	11	0	32	0	0	32	0	0	3	0	3	11	105	22	1	139	185
% App. Total	90.9	0	9.1	0		0	100	0	0		0	0	100	0		7.9	75.5	15.8	0.7		
PHF	.625	.000	.250	.000	.688	.000	.615	.000	.000	.615	.000	.000	.375	.000	.375	.917	.772	.611	.250	.772	.734
Lights	9	0	1	0	10	0	31	0	0	31	0	0	3	0	3	11	104	21	1	137	181
% Lights	90.0	0	100	0	90.9	0	96.9	0	0	96.9	0	0	100	0	100	100	99.0	95.5	100	98.6	97.8
Mediums	1	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	1	1	0	2	4
% Mediums	10.0	0	0	0	9.1	0	3.1	0	0	3.1	0	0	0	0	0	0	1.0	4.5	0	1.4	2.2
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

28 Lord Road, Suite 280 Marlborough, MA, 01752


E/W: Internal Plaza Road File Name : 1247_Plaza_Driveway_at_Internal_11-17-2022

NB: From Benchmark Site Code : 1247

SB: From Site Area Start Date : 11/17/2022

Hanover, MA Page No : 3

		To	o Site	Lot			Т	o Tarç	get			To I	Bench	mark				To 53	3		
		Fr	om No	orth			Fi	rom Ea	ast			Fr	om So	outh			Fi	om W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A								of 1													
Peak Hour fo	r Entir	e Inter	section	n Begir	ns at 04	:15 PM	1														
04:15 PM	11	0	1	Ō	12	0	34	0	0	34	0	0	2	0	2	1	52	12	2	67	115
04:30 PM	20	0	0	0	20	0	37	0	0	37	0	0	7	0	7	2	56	17	0	75	139
04:45 PM	10	0	1	0	11	1	33	1	0	35	0	1	4	0	5	1	30	9	2	42	93
_05:00 PM	22	0	0	0	22	1	37	0	0	38	0	0	6	0	6	0	48	17	1	66	132
Total Volume	63	0	2	0	65	2	141	1	0	144	0	1	19	0	20	4	186	55	5	250	479
% App. Total	96.9	0	3.1	0		1.4	97.9	0.7	0		0	5	95	0		1.6	74.4	22	2		
PHF	.716	.000	.500	.000	.739	.500	.953	.250	.000	.947	.000	.250	.679	.000	.714	.500	.830	.809	.625	.833	.862
Lights	63	0	2	0	65	2	140	1	0	143	0	1	19	0	20	4	183	55	5	247	475
% Lights	100	0	100	0	100	100	99.3	100	0	99.3	0	100	100	0	100	100	98.4	100	100	98.8	99.2
Mediums	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	3
% Mediums	0	0	0	0	0	0	0.7	0	0	0.7	0	0	0	0	0	0	1.1	0	0	0.8	0.6
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
% Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0.4	0.2

28 Lord Road, Suite 280 Marlborough, MA, 01752

E/W: Internal Road to Target NB: From Benchmark/Bank File Name: 1247_Plaza_Driveway_at_Internal_SAT 11-19-2022

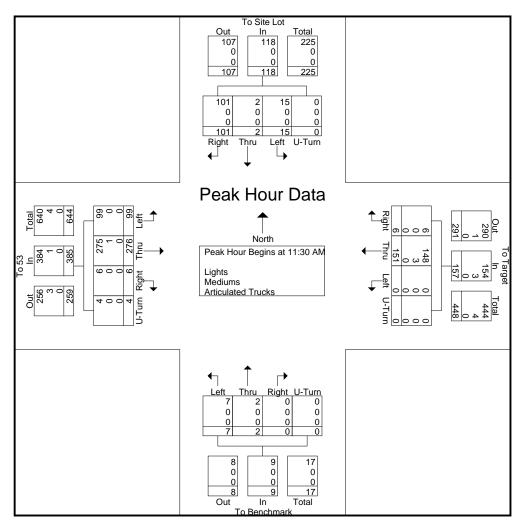
Site Code : 1247

Start Date : 11/19/2022 SB: From Site Area

Page No : 1 Hanover, MA

											IIS - IVIE	ulullis	- Artic	uiaieu	HUCK	.5						
			T	o Site	Lot			T	o Targ	get			To	Bench	mark				To 53	3		
			Fr	om No	orth				rom E				Fr	om So	outh			F	rom W	est		
	Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
	11:00 AM	21	0	3	0	24	3	34	0	0	37	0	0	4	0	4	1	66	26	1	94	159
	11:15 AM	20	0	4	0	24	1	33	0	0	34	0	0	3	0	3	1	76	21	1	99	160
	11:30 AM	29	0	5	0	34	2	50	0	0	52	0	0	1	0	1	3	63	35	1	102	189
	11:45 AM	24	2	1	0	27	1	30	0	0	31	0	1	3	0	4	3	73	20	0	96	158
	Total	94	2	13	0	109	7	147	0	0	154	0	1	11	0	12	8	278	102	3	391	666
	12:00 PM	26	0	7	0	33	1	35	0	0	36	0	1	3	0	4	0	75	22	2	99	172
	12:15 PM	22	0	2	0	24	2	36	0	0	38	0	0	0	0	0	0	65	22	1	88	150
	12:30 PM	31	1	5	0	37	1	39	0	0	40	1	2	1	0	4	0	52	27	1	80	161
	12:45 PM	17	0	4	0	21	5	47	0	0	52	0	1	2	0	3	0	56	24	3	83	159
•	Total	96	1	18	0	115	9	157	0	0	166	1	4	6	0	11	0	248	95	7	350	642
	Grand Total	190	3	31	0	224	16	304	0	0	320	1	5	17	0	23	8	526	197	10	741	1308
	Apprch %	84.8	1.3	13.8	0		5	95	0	0		4.3	21.7	73.9	0		1.1	71	26.6	1.3		
	Total %	14.5	0.2	2.4	0	17.1	1.2	23.2	0	0	24.5	0.1	0.4	1.3	0	1.8	0.6	40.2	15.1	8.0	56.7	
	Lights	190	3	31	0	224	16	301	0	0	317	1	5	17	0	23	8	522	196	10	736	1300
	% Lights	100	100	100	0	100	100	99	0	0	99.1	100	100	100	0	100	100	99.2	99.5	100	99.3	99.4
•	Mediums	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	4	1	0	5	8
	% Mediums	0	0	0	0	0	0	1	0	0	0.9	0	0	0	0	0	0	0.8	0.5	0	0.7	0.6
	Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	% Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

28 Lord Road, Suite 280 Marlborough, MA, 01752


E/W: Internal Road to Target File Name: 1247_Plaza_Driveway_at_Internal_SAT 11-19-2022

NB: From Benchmark/Bank Site Code : 1247

SB: From Site Area Start Date : 11/19/2022

Hanover, MA Page No : 2

		To	Site	Lot			Т	o Tar	get			To I	Bench	mark				To 53	3		
		Fr	om No	orth				rom E				Fr	om So	outh			Fr	rom W	est		
	Right	Thru	Left		App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	From	11:30	AM to	12:45 F	PM - Pe	eak 1 d	of 1													
Peak Hour fo	r Entir	e Inter	sectior	n Begin	s at 11;	30 AM	l														
11:30 AM	29	0	5	0	34	2	50	0	0	52	0	0	1	0	1	3	63	35	1	102	189
11:45 AM	24	2	1	0	27	1	30	0	0	31	0	1	3	0	4	3	73	20	0	96	158
12:00 PM	26	0	7	0	33	1	35	0	0	36	0	1	3	0	4	0	75	22	2	99	172
12:15 PM	22	0	2	0	24	2	36	0	0	38	0	0	0	0	0	0	65	22	1	88	150
Total Volume	101	2	15	0	118	6	151	0	0	157	0	2	7	0	9	6	276	99	4	385	669
% App. Total	85.6	1.7	12.7	0		3.8	96.2	0	0		0	22.2	77.8	0		1.6	71.7	25.7	1		
PHF	.871	.250	.536	.000	.868	.750	.755	.000	.000	.755	.000	.500	.583	.000	.563	.500	.920	.707	.500	.944	.885
Lights	101	2	15	0	118	6	148	0	0	154	0	2	7	0	9	6	275	99	4	384	665
% Lights	100	100	100	0	100	100	98.0	0	0	98.1	0	100	100	0	100	100	99.6	100	100	99.7	99.4
Mediums	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	4
% Mediums	0	0	0	0	0	0	2.0	0	0	1.9	0	0	0	0	0	0	0.4	0	0	0.3	0.6
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

28 Lord Road, Suite 280 Marlborough, MA, 01752

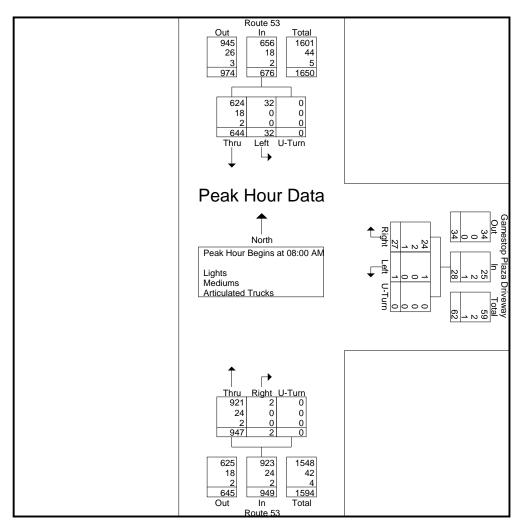
N/S: Route 53 File Name: 1247_Washington_Street_at_Gamestop_11-17-2022

WB: Target Plaza Unsignalized Site Code : 1247

Hanover, MA Start Date: 11/17/2022

Page No : 1

				Groups Pr				<u>iculated Tru</u>	ıcks				
		Rou	te 53		Gar	nestop Pla	aza Drive	way		Rou	ıte 53		
		From	North			From				From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
07:00 AM	63	0	0	63	2	0	0	2	0	239	0	239	304
07:15 AM	109	4	0	113	0	0	0	0	0	267	0	267	380
07:30 AM	112	3	0	115	1	0	0	1	0	246	0	246	362
07:45 AM	148	6	0	154	1	1	0	2	11	250	0	251	407
Total	432	13	0	445	4	1	0	5	1	1002	0	1003	1453
08:00 AM	157	7	0	164	2	1	0	3	1	200	0	201	368
08:15 AM	160	3	0	163	6	0	0	6	1	252	0	253	422
08:30 AM	145	8	0	153	10	0	0	10	0	238	0	238	401
08:45 AM	182	14	0	196	9	0	0	9	0	257	0	257	462
Total	644	32	0	676	27	1	0	28	2	947	0	949	1653
04:00 PM	358	18	0	376	27	2	0	29	2	228	0	230	635
04:15 PM	358	19	0	377	39	4	0	43	1	230	0	231	651
04:30 PM	350	13	0	363	37	0	0	37	0	240	0	240	640
04:45 PM	311	9	0	320	33	3	00	36	0	212	0	212	568
Total	1377	59	0	1436	136	9	0	145	3	910	0	913	2494
05:00 PM	332	17	0	349	23	1	0	24	3	267	0	270	643
05:15 PM	333	16	0	349	27	2	0	29	1	211	0	212	590
05:30 PM	284	16	0	300	24	4	0	28	2	168	0	170	498
05:45 PM	273	10	0	283	23	3	0	26	3	189	0	192	501
Total	1222	59	0	1281	97	10	0	107	9	835	0	844	2232
Grand Total	3675	163	0	3838	264	21	0	285	15	3694	0	3709	7832
Apprch %	95.8	4.2	0		92.6	7.4	0		0.4	99.6	0		
Total %	46.9	2.1	0	49	3.4	0.3	0	3.6	0.2	47.2	0	47.4	
Lights	3615	161	0	3776	260	21	0	281	15	3622	0	3637	7694
% Lights	98.4	98.8	0	98.4	98.5	100	0	98.6	100	98.1	0	98.1	98.2
Mediums	54	1	0	55	3	0	0	3	0	57	0	57	115
% Mediums	1.5	0.6	0	1.4	1.1	0	0	1.1	0	1.5	0	1.5	1.5
Articulated Trucks	6	1	0	7	1	0	0	1	0	15	0	15	23
% Articulated Trucks	0.2	0.6	0	0.2	0.4	0	0	0.4	0	0.4	0	0.4	0.3


28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 File Name: 1247_Washington_Street_at_Gamestop_11-17-2022

WB: Target Plaza Unsignalized Site Code : 1247

Hanover, MA Start Date: 11/17/2022

		Rout			Gam		laza Driv	eway			ite 53		
		From	North			From	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis	From 07:0	0 AM to 1	1:45 AM -	- Peak 1 of	1								
Peak Hour for Entire	e Intersection	on Begins	at 08:00	AM .									
08:00 AM	157	7	0	164	2	1	0	3	1	200	0	201	368
08:15 AM	160	3	0	163	6	0	0	6	1	252	0	253	422
08:30 AM	145	8	0	153	10	0	0	10	0	238	0	238	401
08:45 AM	182	14	0	196	9	0	0	9	0	257	0	257	462
Total Volume	644	32	0	676	27	1	0	28	2	947	0	949	1653
% App. Total	95.3	4.7	0		96.4	3.6	0		0.2	99.8	0		
PHF	.885	.571	.000	.862	.675	.250	.000	.700	.500	.921	.000	.923	.894
Lights	624	32	0	656	24	1	0	25	2	921	0	923	1604
% Lights	96.9	100	0	97.0	88.9	100	0	89.3	100	97.3	0	97.3	97.0
Mediums	18	0	0	18	2	0	0	2	0	24	0	24	44
% Mediums	2.8	0	0	2.7	7.4	0	0	7.1	0	2.5	0	2.5	2.7
Articulated Trucks	2	0	0	2	1	0	0	1	0	2	0	2	5
% Articulated Trucks	0.3	0	0	0.3	3.7	0	0	3.6	0	0.2	0	0.2	0.3


28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 File Name: 1247_Washington_Street_at_Gamestop_11-17-2022

WB: Target Plaza Unsignalized Site Code: 1247

Hanover, MA Start Date: 11/17/2022

		Rou	te 53		Ga	mestop P	laza Driv	eway		Rou	ıte 53		
		From	North			Fron	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis	From 12:0	0 PM to	05:45 PM	- Peak 1 of	1								
Peak Hour for Entire	e Intersection	on Begin	s at 04:15	PM .									
04:15 PM	358	19	0	377	39	4	0	43	1	230	0	231	651
04:30 PM	350	13	0	363	37	0	0	37	0	240	0	240	640
04:45 PM	311	9	0	320	33	3	0	36	0	212	0	212	568
05:00 PM	332	17	0	349	23	1_	0	24	3	267	0	270	643
Total Volume	1351	58	0	1409	132	8	0	140	4	949	0	953	2502
% App. Total	95.9	4.1	0		94.3	5.7	0		0.4	99.6	0		
PHF	.943	.763	.000	.934	.846	.500	.000	.814	.333	.889	.000	.882	.961
Lights	1340	57	0	1397	131	8	0	139	4	942	0	946	2482
% Lights	99.2	98.3	0	99.1	99.2	100	0	99.3	100	99.3	0	99.3	99.2
Mediums	7	1	0	8	1	0	0	1	0	5	0	5	14
% Mediums	0.5	1.7	0	0.6	0.8	0	0	0.7	0	0.5	0	0.5	0.6
Articulated Trucks	4	0	0	4	0	0	0	0	0	2	0	2	6
% Articulated Trucks	0.3	0	0	0.3	0	0	0	0	0	0.2	0	0.2	0.2

28 Lord Road, Suite 280 Marlborough, MA, 01752

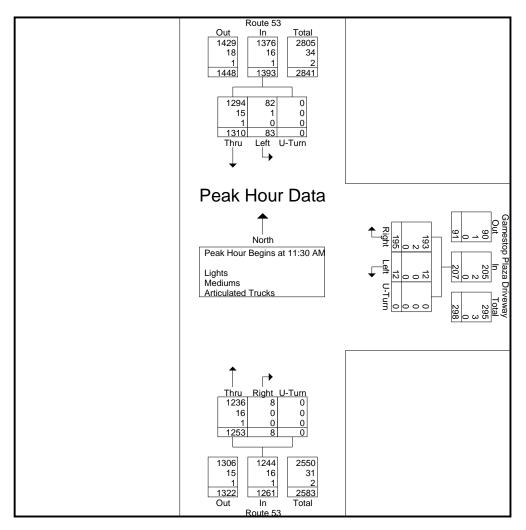
N/S: Route 53 File Name: 1247_Washington_Street_at_Gamestop_SAT 11-19-2022

EB: Target Lot Unsignalized Site Code: 1247

Hanover, MA Start Date: 11/19/2022

Page No : 1

				Groups Pr	intea- Lig	<u>nts - iviea</u>	iums - Ar	ticulated in	ucks				
		Rou	ıte 53		Ga	mestop P	laza Driv	eway		Rou	ıte 53		
		From	North			Fron	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
11:00 AM	311	10	0	321	36	2	0	38	3	337	0	340	699
11:15 AM	303	14	0	317	45	6	0	51	1	307	0	308	676
11:30 AM	304	18	0	322	32	2	0	34	1	300	0	301	657
11:45 AM	340	22	0	362	45	6	0	51	2	301	0	303	716
Total	1258	64	0	1322	158	16	0	174	7	1245	0	1252	2748
12:00 PM	338	28	0	366	57	2	0	59	0	339	0	339	764
12:15 PM	328	15	0	343	61	2	0	63	5	313	0	318	724
12:30 PM	329	24	0	353	40	4	0	44	2	287	0	289	686
12:45 PM	332	13	0	345	48	4	0	52	3	298	0	301	698
Total	1327	80	0	1407	206	12	0	218	10	1237	0	1247	2872
Grand Total	2585	144	0	2729	364	28	0	392	17	2482	0	2499	5620
Apprch %	94.7	5.3	0		92.9	7.1	0		0.7	99.3	0		
Total %	46	2.6	0	48.6	6.5	0.5	0	7	0.3	44.2	0	44.5	
Lights	2561	143	0	2704	362	28	0	390	17	2461	0	2478	5572
% Lights	99.1	99.3	0	99.1	99.5	100	0	99.5	100	99.2	0	99.2	99.1
Mediums	22	1	0	23	2	0	0	2	0	19	0	19	44
% Mediums	0.9	0.7	0	0.8	0.5	0	0	0.5	0	0.8	0	0.8	0.8
Articulated Trucks	2	0	0	2	0	0	0	0	0	2	0	2	4
% Articulated Trucks	0.1	0	0	0.1	0	0	0	0	0	0.1	0	0.1	0.1


28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 File Name: 1247_Washington_Street_at_Gamestop_SAT 11-19-2022

EB: Target Lot Unsignalized Site Code: 1247

Hanover, MA Start Date: 11/19/2022

			te 53		Ga	mestop P		eway			ıte 53		
		From	North			Fron	n East			From	South		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis	From 11:0	0 AM to 1	12:15 PM	- Peak 1 of	1								
Peak Hour for Entire	e Intersection	on Begins	s at 11:30	AM .									
11:30 AM	304	18	0	322	32	2	0	34	1	300	0	301	657
11:45 AM	340	22	0	362	45	6	0	51	2	301	0	303	716
12:00 PM	338	28	0	366	57	2	0	59	0	339	0	339	764
12:15 PM	328	15	0	343	61	2	0	63	5	313	0	318	724
Total Volume	1310	83	0	1393	195	12	0	207	8	1253	0	1261	2861
% App. Total	94	6	0		94.2	5.8	0		0.6	99.4	0		
PHF	.963	.741	.000	.952	.799	.500	.000	.821	.400	.924	.000	.930	.936
Lights	1294	82	0	1376	193	12	0	205	8	1236	0	1244	2825
% Lights	98.8	98.8	0	98.8	99.0	100	0	99.0	100	98.6	0	98.7	98.7
Mediums	15	1	0	16	2	0	0	2	0	16	0	16	34
% Mediums	1.1	1.2	0	1.1	1.0	0	0	1.0	0	1.3	0	1.3	1.2
Articulated Trucks	1	0	0	1	0	0	0	0	0	1	0	1	2
% Articulated Trucks	0.1	0	0	0.1	0	0	0	0	0	0.1	0	0.1	0.1

28 Lord Road, Suite 280 Marlborough, MA, 01752

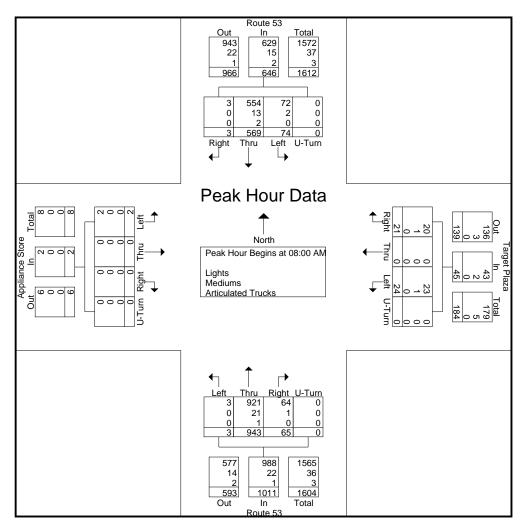
N/S: Route 53 File Name: 1247_Washington_Street_at_Plaza_Signal_11-17-2022

WB: Target Plaza Drive Site Code : 1247

Hanover, MA Start Date: 11/17/2022

Page No : 1

		Route 53 From North				Ta	rget P	laza	10 1110	alullis	F	Route					liance				
		Fr		orth			F	rom E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
07:00 AM	0	63	1	0	64	3	0	0	0	3	0	221	0	0	221	0	0	0	0	0	288
07:15 AM	0	105	2	0	107	0	0	1	0	1	1	257	0	0	258	0	0	0	0	0	366
07:30 AM	0	109	3	0	112	1	0	1	0	2	8	245	0	0	253	0	0	0	0	0	367
07:45 AM	1	140	9	0	150	5	0	1	0	6	14	236	0	0	250	0	0	0	0	0	406
Total	1	417	15	0	433	9	0	3	0	12	23	959	0	0	982	0	0	0	0	0	1427
08:00 AM	0	142	18	0	160	4	0	2	0	6	15	202	0	0	217	0	0	0	0	0	383
08:15 AM	2	139	17	0	158	1	0	5	0	6	7	254	2	0	263	0	0	1	0	1	428
08:30 AM	0	125	19	0	144	6	0	9	0	15	21	236	1	0	258	0	0	1	0	1	418
08:45 AM	1	163	20	0	184	10	0	8	0	18	22	251	0	0	273	0	0	0	0	0	475
Total	3	569	74	0	646	21	0	24	0	45	65	943	3	0	1011	0	0	2	0	2	1704
	ı					ı					ı					ı					i
04:00 PM	0	312	45	0	357	18	0	23	0	41	29	201	1	0	231	0	0	1	0	1	630
04:15 PM	0	332	40	0	372	14	0	35	0	49	24	216	0	0	240	1	0	0	0	1	662
04:30 PM	1	305	45	0	351	27	0	39	0	66	28	214	0	0	242	0	0	3	0	3	662
04:45 PM	11	330	14	0_	345	11	0	32	0	43	28	204	0	0	232	1_	0	1_	0	2	622
Total	2	1279	144	0	1425	70	0	129	0	199	109	835	1	0	945	2	0	5	0	7	2576
05:00 PM	1 1	299	34	0	334	28	0	43	0	71	28	228	0	0	256	1 1	0	1	0	2	663
05:00 FM		301	25	0	326	21	0	23	0	44	24	193	0	0	217	1	0	0	0	1	588
05:30 PM	0	266	24	0	290	12	0	20	0	32	24	163	1	0	188	0	1	0	0	1	511
05:45 PM	0	240	29	0	269	16	1	28	0	45	28	175	0	0	203	1	0	1	0	2	519
Total	1	1106	112	0	1219	77	1	114	0	192	104	759	1	0	864	3	1	2	0	6	2281
	ı			_					_				_	_				_	_		
Grand Total		3371	345	0	3723	177	1	270	0	448	301	3496	5	0	3802	5	1	9	0	15	7988
Apprch %	0.2	90.5	9.3	0	40.0	39.5 2.2	0.2	60.3	0	5 0	7.9	92	0.1 0.1	0	47.0	33.3	6.7	60	0	0.0	
Total %	0.1	42.2 3323	4.3 341	0	46.6 3671	173	0	3.4 269	0	5.6 443	3.8 298	43.8 3437	5	0	47.6 3740	0.1 5	0 1	0.1 9	0	0.2 15	7869
Lights % Lights	100	98.6	98.8	0	98.6	97.7	100	99.6	0	98.9	99	98.3	100	0	98.4	100	100	100	0	100	98.5
Mediums	0	43	30.0	0	46	37.7	0	1	0	4	2	47	0	0	49	0	0	0	0	0	99
% Mediums	ő	1.3	0.9	ő	1.2	1.7	ő	0.4	Ö	0.9	0.7	1.3	0	0	1.3	ő	ő	0	Ö	Ö	1.2
Articulated Trucks																					
% Articulated Trucks	0	0.1	0.3	0	0.2	0.6	0	0	0	0.2	0.3	0.3	0	0	0.3	0	0	0	0	0	0.3

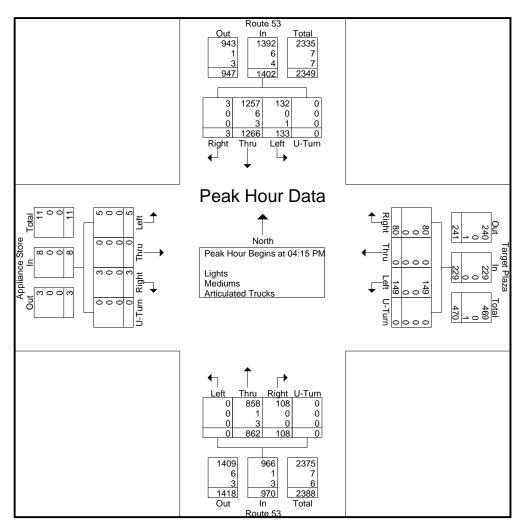

28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 File Name: 1247_Washington_Street_at_Plaza_Signal_11-17-2022

WB: Target Plaza Drive Site Code : 1247

Hanover, MA Start Date: 11/17/2022

		Route 53 From North					Ta	rget P	laza				Route					liance			
		Fı	om No	orth			F	rom E	ast			Fr	om Sc	outh			F	om W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A								of 1													
Peak Hour fo	r Entir	e Inter	section	n Begin	s at 08	:00 AM	1														
08:00 AM	0	142	18	Ō	160	4	0	2	0	6	15	202	0	0	217	0	0	0	0	0	383
08:15 AM	2	139	17	0	158	1	0	5	0	6	7	254	2	0	263	0	0	1	0	1	428
08:30 AM	0	125	19	0	144	6	0	9	0	15	21	236	1	0	258	0	0	1	0	1	418
08:45 AM	1	163	20	0	184	10	0	8	0	18	22	251	0	0	273	0	0	0	0	0	475
Total Volume	3	569	74	0	646	21	0	24	0	45	65	943	3	0	1011	0	0	2	0	2	1704
% App. Total	0.5	88.1	11.5	0		46.7	0	53.3	0		6.4	93.3	0.3	0		0	0	100	0		
PHF	.375	.873	.925	.000	.878	.525	.000	.667	.000	.625	.739	.928	.375	.000	.926	.000	.000	.500	.000	.500	.897
Lights	3	554	72	0	629	20	0	23	0	43	64	921	3	0	988	0	0	2	0	2	1662
% Lights	100	97.4	97.3	0	97.4	95.2	0	95.8	0	95.6	98.5	97.7	100	0	97.7	0	0	100	0	100	97.5
Mediums	0	13	2	0	15	1	0	1	0	2	1	21	0	0	22	0	0	0	0	0	39
% Mediums	0	2.3	2.7	0	2.3	4.8	0	4.2	0	4.4	1.5	2.2	0	0	2.2	0	0	0	0	0	2.3
Articulated Trucks	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3
% Articulated Trucks	0	0.4	0	0	0.3	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0	0	0	0.2


28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 File Name: 1247_Washington_Street_at_Plaza_Signal_11-17-2022

WB: Target Plaza Drive Site Code : 1247

Hanover, MA Start Date: 11/17/2022

		Route 53 From North						rget P					Route					liance			
		Fı	om No	orth			F	rom E	ast			Fr	om Sc	uth			F	rom W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	s From	12:00	PM to	05:45 F	PM - P6	eak 1 d	of 1													
Peak Hour fo	or Entir	e Inter	section	n Begir	s at 04	:15 PM	1														
04:15 PM	0	332	40	Ō	372	14	0	35	0	49	24	216	0	0	240	1	0	0	0	1	662
04:30 PM	1	305	45	0	351	27	0	39	0	66	28	214	0	0	242	0	0	3	0	3	662
04:45 PM	1	330	14	0	345	11	0	32	0	43	28	204	0	0	232	1	0	1	0	2	622
05:00 PM	1	299	34	0	334	28	0	43	0	71	28	228	0	0	256	1	0	1	0	2	663
Total Volume	3	1266	133	0	1402	80	0	149	0	229	108	862	0	0	970	3	0	5	0	8	2609
% App. Total		90.3				34.9		65.1			11.1	88.9				37.5		62.5			
PHF	.750	.953	.739	.000	.942	.714	.000	.866	.000	.806	.964	.945	.000	.000	.947	.750	.000	.417	.000	.667	.984
Lights	3	1257	132	0	1392	80	0	149	0	229	108	858	0	0	966	3	0	5	0	8	2595
% Lights	100	99.3	99.2									99.5									
Mediums	0	6	0	0	6	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	7
% Mediums	0	0.5	0	0	0.4	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0	0	0	0.3
Articulated Trucks	0	3	1	0	4	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	7
% Articulated Trucks	0	0.2	8.0	0	0.3	0	0	0	0	0	0	0.3	0	0	0.3	0	0	0	0	0	0.3

28 Lord Road, Suite 280 Marlborough, MA, 01752

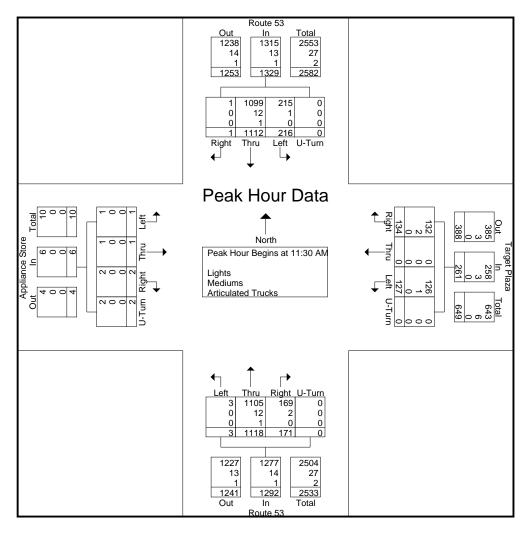
N/S: Route 53 File Name: 1247_Washington_Street_at_Plaza_Signal_SAT 11-19-2022

WB: Target Plaza Site Code : 1247

Hanover, MA Start Date: 11/19/2022

Page No : 1

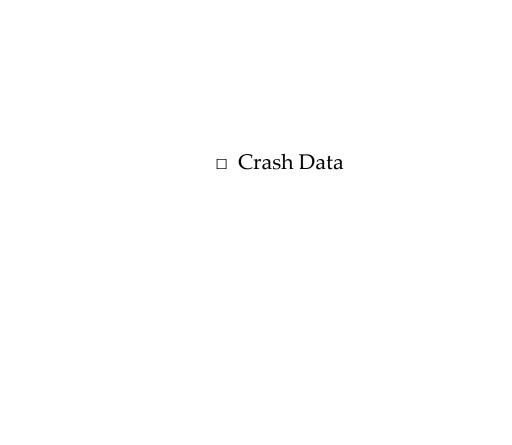
		Route 53 From North					rget P rom E					Route rom So					iance om W				
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Tum	App. Total	Int. Total
11:00 AM	2	257	43	0	302	26	0	35	0	61	47	320	1	0	368	1	2	2	0	5	736
11:15 AM	1	264	53	0	318	27	0	31	0	58	49	270	1	0	320	1	0	3	0	4	700
11:30 AM	0	253	54	0	307	32	0	51	0	83	46	248	0	0	294	2	1	1	1	5	689
11:45 AM	0	288	70	0	358	35	0	19	0	54	32	285	0	0	317	0	0	0	1	1	730
Total	3	1062	220	0	1285	120	0	136	0	256	174	1123	2	0	1299	4	3	6	2	15	2855
12:00 PM	l 0	284	46	0	330	42	0	29	0	71	44	294	2	0	340	0	0	0	0	0	741
12:15 PM	1	287	46	Ö	334	25	ő	28	Ö	53	49	291	1	Ö	341	ő	Ö	ő	ő	0	728
12:30 PM	1	264	48	0	313	32	1	40	0	73	35	247	0	0	282	1	0	1	0	2	670
12:45 PM	1	289	46	0	336	26	0	44	0	70	40	283	0	0	323	0	0	1_	0	1	730
Total	3	1124	186	0	1313	125	1	141	0	267	168	1115	3	0	1286	1	0	2	0	3	2869
Grand Total		2186	406	0	2598	245	1	277	0	523	342	2238	5	0	2585	5	3	8	2	18	5724
Apprch %	0.2	84.1	15.6	0		46.8	0.2	53	0		13.2	86.6	0.2	0		27.8	16.7	44.4	11.1		
Total %	0.1	38.2	7.1	0	45.4	4.3	0	4.8	0	9.1	6	39.1	0.1	0	45.2	0.1	0.1	0.1	0	0.3	
Lights	6	2165	404	0	2575	243	1	276	0	520	338	2218	5	0	2561	5	3	8	2	18	5674
% Lights	100	99	99.5	0	99.1	99.2	100	99.6	0	99.4	98.8	99.1	100	0	99.1	100	100	100	100	100	99.1
Mediums	0	20	2	0	22	2	0	1	0	3	4	18	0	0	22	0	0	0	0	0	47
<u>% Mediums</u>	0	0.9	0.5	0	0.8	0.8	0	0.4	0	0.6	1.2	0.8	0	0	0.9	0	0	0	0	0	0.8
Articulated Trucks % Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0	0	0	0.1


28 Lord Road, Suite 280 Marlborough, MA, 01752

N/S: Route 53 File Name: 1247_Washington_Street_at_Plaza_Signal_SAT 11-19-2022

WB: Target Plaza Site Code : 1247

Hanover, MA Start Date: 11/19/2022


		Route 53 From North						rget P					Route					liance			
		<u>FI</u>	om No	orth			<u></u>	rom E	<u>ast</u>			<u>Fr</u>	<u>om Sc</u>	<u>uth</u>			F	rom W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Tum	App. Total	Int. Total
Peak Hour A	nalysis	From	11:00	AM to	12:45 F	PM - P6	eak 1 d	of 1													
Peak Hour fo	r Entir	e Inter	section	n Begin	s at 11	:30 AM	1														
11:30 AM	0	253	54	0	307	32	0	51	0	83	46	248	0	0	294	2	1	1	1	5	689
11:45 AM	0	288	70	0	358	35	0	19	0	54	32	285	0	0	317	0	0	0	1	1	730
12:00 PM	0	284	46	0	330	42	0	29	0	71	44	294	2	0	340	0	0	0	0	0	741
12:15 PM	1	287	46	0	334	25	0	28	0	53	49	291	1	0	341	0	0	0	0	0	728
Total Volume	1	1112	216	0	1329	134	0	127	0	261	171	1118	3	0	1292	2	1	1	2	6	2888
% App. Total		83.7	16.3			51.3		48.7			13.2	86.5				33.3	16.7	16.7	33.3		
PHF	.250	.965	.771	.000	.928	.798	.000	.623	.000	.786	.872	.951	.375	.000	.947	.250	.250	.250	.500	.300	.974
Lights	1	1099	215	0	1315	132	0	126	0	258	169	1105	3	0	1277	2	1	1	2	6	2856
% Lights	100	98.8	99.5			98.5		99.2			98.8	98.8									
Mediums	0	12	1	0	13	2	0	1	0	3	2	12	0	0	14	0	0	0	0	0	30
% Mediums	0	1.1	0.5	0	1.0	1.5	0	8.0	0	1.1	1.2	1.1	0	0	1.1	0	0	0	0	0	1.0
Articulated Trucks	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
% Articulated Trucks	0	0.1	0	0	0.1	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0	0	0	0.1

STATION 703 - ABINGTON - RTE.123 - AT THE BROCKTON C.L.														
YR		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
12		12382	13150	13430	13546	13366	13534	12225	13018	13740	13653	13399	13378	13235
		-1%	-6%	-3%	0%	0%	0%	5%	0%	-1%	0%	-1%	-1%	-1%
13		12301	12335	13001	13557	13321	13558	12876	13055	13640	13635	13199	13188	13139
		-3%	3%	2%	-1%	0%	0%	-1%	-1%	-2%	-2%	-2%	1%	-1%
14		11894	12651	13252	13385	13345	13524	12759	12893	13376	13379	12882	13315	13055
		1%	-5%	-5%	-2%	0%	-1%	1%	0%	-1%	-1%	0%	-2%	-1%
15		11974	11975	12649	13151	13378	13433	12829	12941	13230	13222	12868	12985	12886
		1%	3%	3%	-1%	-2%	1%	-1%	0%	-1%	-1%	-1%	0%	0%
16		12035	12304	13075	13076	13171	13574	12742	12986	13061	13140	12743	12940	12904
		-4%	-2%	-6%	-2%	-3%	-5%	-3%	-5%	-2%	-4%	-3%	-1%	-3%
19		11582	12046	12326	12811	12826	12897	12375	12393	12763	12602	12347	12748	12476
	Seasonal Adjustment Factor	1.08	1.04	1.00	0.98	0.98	0.96	1.03	1.01	0.97	0.98	1.00	0.99	
	(to average month)												Growth	-0.73%

Average Yearly Growth Calculated -0.7%
Yearly Growth Factor Used 0.5%

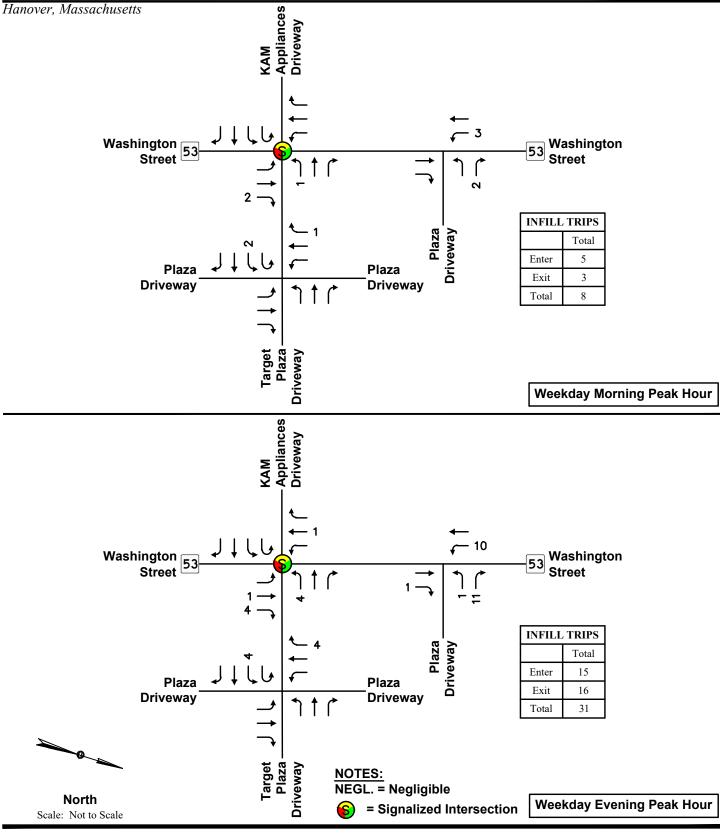
INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Hanover, N	МА			COUNT DA	TE:	Nov-22
DISTRICT: 5	UNSIGN	ALIZED :		SIGNA	ALIZED :	Х
		~ IN7	TERSECTION	I DATA ~		111111111111111111111111111111111111111
MAJOR STREET :	Washington	Street (Route	53)			
MINOR STREET(S):	Main Plaza [Priveway				
	Retail Drivev	<i>ı</i> ay				
	<u></u>		_			
INTERSECTION	 North			te 53 2)		
DIAGRAM	rvortir		l			
(Label Approaches)		Retail Dwy (3)		Γ	Main Plaza Dv (4)	vy
			ı Rout	o 53		
			(1			
			l		I	
			PEAK HOUF	R VOLUMES	1	Total Peak
APPROACH:	1	2	3	4	5	Hourly
DIRECTION:	NB	SB	EB	WB		Approach Volume
PEAK HOURLY VOLUMES (PM) :	970	1,602	8	229		2,809
"K" FACTOR:	0.090	INTERSE	ECTION ADT APPROACH		AL DAILY	31,211
TOTAL # OF CRASHES :	2	# OF YEARS :	5	CRASHES	GE#OF PERYEAR(\(\):	0.40
CRASH RATE CALCU	ILATION :	0.04	RATE =	<u>(A*1,</u>	000,000) * 365)	
Comments : MassDOT	District 5 Avg	: Signalized =	: 0.75; Unsign	alized = 0.57	7	
Project Title & Date:	1247 Hana	ıor				

Crash Number City Town NCrash Date Crash Severity Crash Time Max Injury Severity Reported Number of Vehicles First Harmful Event **Light Conditions** Manner of Collision Road Surface Condition Total Fatalities Vehicle Travel Directions (Al Weather Conditions 0 V1: S / V2: S 4362119 HANOVER 04/26/2017 Property damage only (n:10:34 PM No injury 2 Collision with motor vehicle in traffic Dark - lighted roadway Rear-end Wet 4900236 HANOVER 11/20/2020 Property damage only (n/2:12 PM No Apparent Injury (O) 3 Collision with motor vehicle in traffic 0 V1: N / V2: N / V3: N Clear/Clear Daylight Rear-end Dry

Data Level: CRASH
Query Type: Spatial

Criteria: If you conducted an Advanced Query your SQL statement will be listed here


□ Background Growth Data	

Institute of Transportation Engineers (ITE) 11th Edition Land Use Code (LUC) 820 - Shopping Center

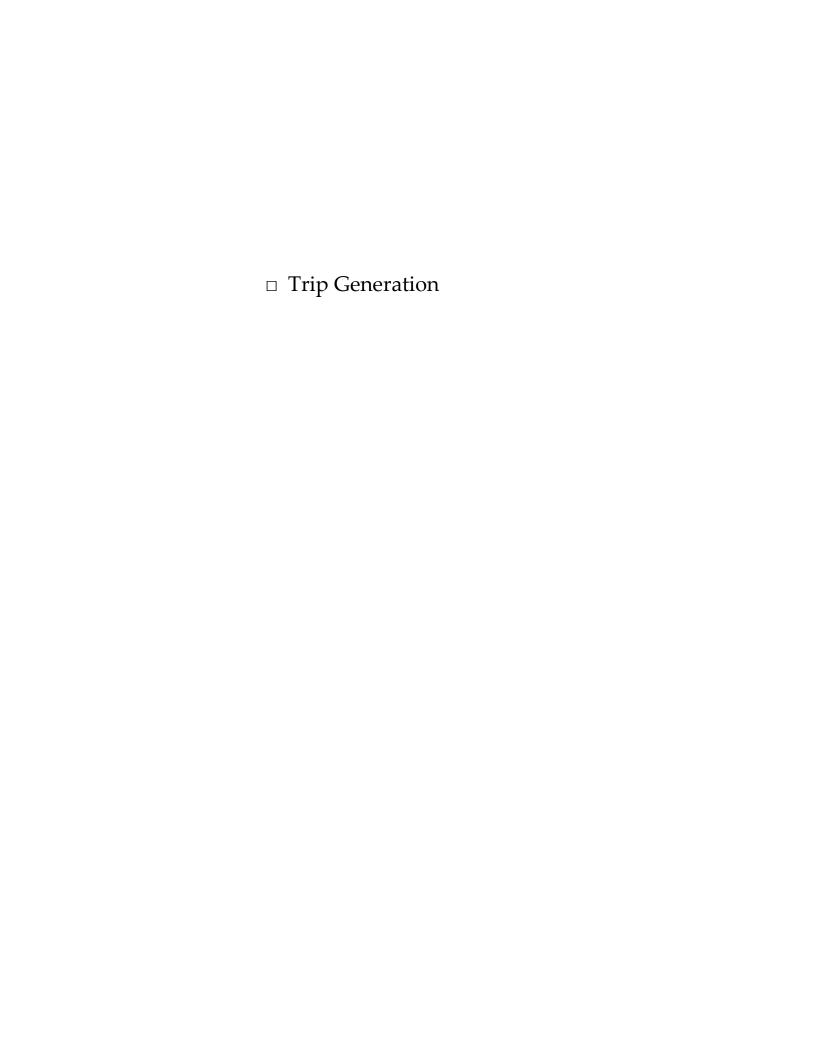
1,000 Sq. Feet Gross Leasable Area

Average Vehicle Trips Ends vs:


```
Independent Variable (X):
                                200.700
                                          Plaza Total
                                  6.8
                                           Retail Component
AVERAGE WEEKDAY DAILY
   T = 26.11*(X) + 5863.73
   T = 26.11*(
                     200.70 ) + 5863.73
   T = 11,104.01
   T = 11104.00
                    vehicle trips
       with 50% (
                      5,552 vpd) entering and 50% (
                                                           5,552 vpd) exiting.
                           28
                                                               28
Prorated:
                         188
                                                             188
                                                                                 376
WEEKDAY MORNING PEAK HOUR OF ADJACENT STREET TRAFFIC
   T = 0.59*(X) + 133.55
   T = 0.59*(
                     200.70 ) + 1533.55
   T = 251.96
   T = 252
                    vehicle trips
                             vph) entering and 38% (
       with 62% (
                                                                vph) exiting.
                           1
                                                                0
Prorated:
                           5
                                                                3
WEEKDAY EVENING PEAK HOUR OF ADJACENT STREET TRAFFIC
Ln T = 0.72*Ln(X) + 3.02
Ln T = 0.72*Ln(
                     200.70) + 3.02
Ln T = 6.84
    T= 931.97
   T = 932
                    vehicle trips
       with 48% (
                       447
                             vph) entering and 52% (
                                                            485 vph) exiting.
                           2
                                                                2
Prorated:
                          15
                                                               16
                                                                                   32
SATURDAY DAILY
   T = 36.03*(X) + 6840.22
   T = 36.03*(
                     200.70 ) + 6840.22
   T = 14,071.44
   T = 14,071
                    vehicle trips
       with 50% (
                      7,036 vph) entering and 50% (
                                                           7,035 vph) exiting.
                           35
                                                               35
Prorated:
                         238
                                                              238
                                                                                  477
SATURDAY MIDDAY PEAK HOUR OF GENERATOR
Ln T = 0.76*Ln(X) + 3.00
Ln T = 0.76*Ln (
                     200.70) + 3.00
Ln T = 7.03
   T = 1129.33
   T = 1,129
                    vehicle trips
       with 52% (
                       587
                             vph) entering and 48% (
                                                            542 vph) exiting.
                           3
                                                                3
Prorated:
                           20
                                                               18
                                                                                   38
```


Attachment

6,800 SF Vacancy Trip Generation Weekday Peak Hour Volumes



Attacment

MDM TRANSPORTATION CONSULTANTS, INC. Planners & Engineers

6,800 SF Vacancy Trip Generation Saturday Midday Peak Hour Volumes

Institute of Transportation Engineers (ITE) 11th Edition Land Use Code (LUC) 934 - Fast-Food Restaurant with Drive-Through Window

Average Vehicle Trips Ends vs: 1,000 Sq. Feet Gross Floor Area

Independent Variable (X): 2.114 AM/MID PM/SAT
Pass-By: 0.5 0.55

	i ass-by.	0.5	0.50	'
AVERAGE WEEKDAY DAILY		<u>Total</u>	Pass-By	Net New
T = 467.48 * (X)	AM		_	
T = 467.48 * 2.11	In	48	24	24
T = 988.25	Out	<u>46</u>	<u>24</u>	<u>22</u>
T = 988 vehicle trips	Total	94	48	46
with 50% (494 vpd) entering and 50% (494 vpd) exiting.				
	Midday			
	In	55	27	28
WEEKDAY MORNING PEAK HOUR OF ADJACENT STREET TRAFFIC	Out	<u>53</u>	<u>27</u>	<u>26</u>
T = 44.61 * (X)	Total	108	54	54
T = 44.61 * 2.11				
T = 94.31	PM			
T = 94 vehicle trips	In	36	19	17
with 51% (48 vph) entering and 49% (46 vph) exiting.	Out	<u>34</u>	<u>19</u>	<u>15</u>
	Total	70	38	32
WEEKDAY MIDDAY PEAK HOUR OF GENERATOR - LUNCH	Sat			
T = 50.94 * (X)	In	60	32	28
T = 50.94 * vpd) entering and 50% (Out	<u>57</u>	<u>32</u>	<u>25</u>
T = 107.69	Total	117	64	53
T = 108 vehicle trips				
with 51% (55 vph) entering and 49% (53 vph) exiting. Weekda	y Daily	988	494	494
Saturda	y Daily	1,302	716	586

WEEKDAY EVENING PEAK HOUR OF ADJACENT STREET TRAFFIC

T = 33.03 * (X)

T = 33.03 * 2.11

T = 69.83

T = 70 vehicle trips

with 52% (36 vph) entering and 48% (34 vph) exiting.

SATURDAY DAILY

T = 616.12 * (X)

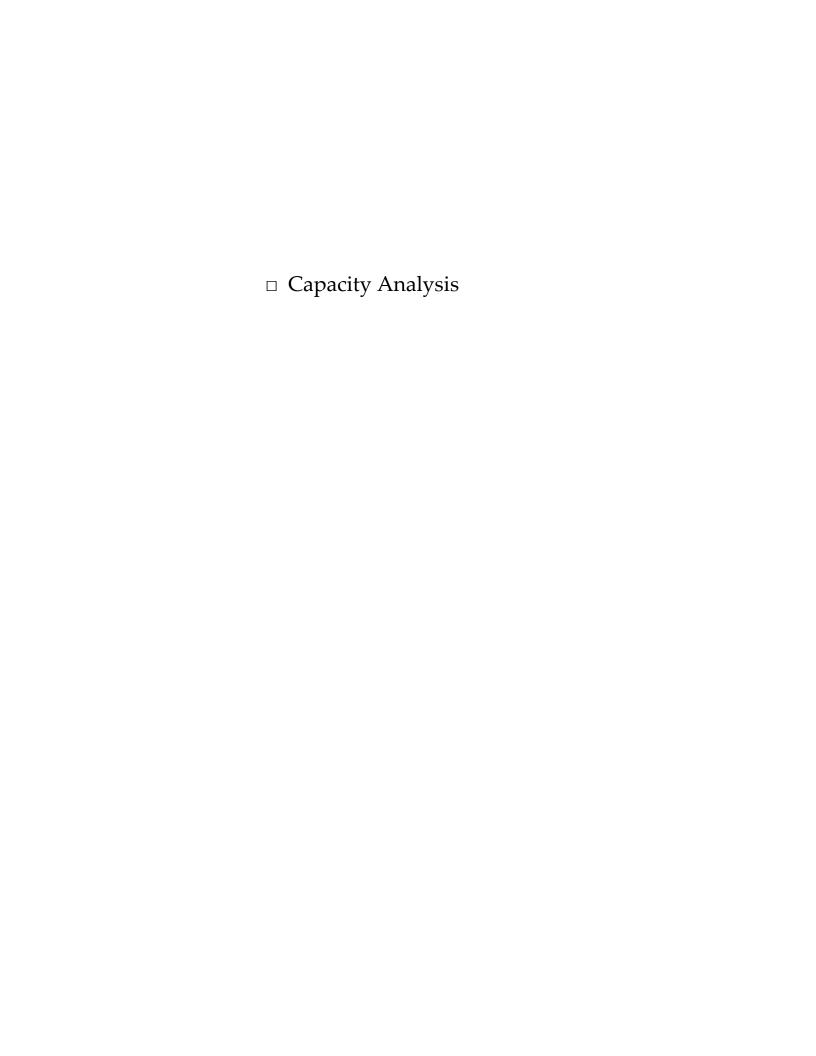
T = 616.12 * 2.11

T = 1,302.48

T = 1,302 vehicle trips

with 50% ($\,$ 651 $\,$ vpd) entering and 50% ($\,$ 651 $\,$ vpd) exiting.

SATURDAY MIDDAY PEAK HOUR OF GENERATOR


T = 55.25 * (X)

T = 55.25 * 2.11

T = 116.80

T = 117 vehicle trips

with 51% (60 vph) entering and 49% (57 vph) exiting.

LEVEL OF SERVICE METHODOLOGY

Capacity analysis of intersections is developed using the Synchro® computer software, which implements the methods of the Highway Capacity Manual 6th Edition (HCM). The resulting analysis presents a level-of-service (LOS) designation for individual intersection movements and (for signalized intersections) for the entire intersection. The LOS is a letter designation that provides a qualitative measure of operating conditions based on several factors including roadway geometry, speeds, ambient traffic volumes, traffic controls, and driver characteristics. Since the LOS of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of LOS, depending on the time of day, day of week, or period of year. A range of six levels of service are defined on the basis of average delay, ranging from LOS A (the least delay) to LOS F (delays greater than 50 seconds for unsignalized movements, and greater than 80 seconds for signalized movements).

Signalized Intersection Performance Measures

The six LOS designations for signalized intersections may be described as follows:

- *LOS A* describes operations with low control delay; most vehicles do not stop at all.
- *LOS B* describes operations with relatively low control delay. However, more vehicles stop than LOS A.
- LOS C describes operations with higher control delays. Individual cycle failures
 may begin to appear. The number of vehicles stopping is significant at this level,
 although many still pass through the intersection without stopping.
- LOS D describes operations with control delay in the range where the influence of congestion becomes more noticeable. Many vehicles stop and individual cycle failures are noticeable.
- LOS E describes operations with high control delay values. Individual cycle failures are frequent occurrences.
- *LOS F* describes operations with high control delay values that often occur with over-saturation. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

The LOS for signalized intersections are calculated using the operational analysis methodology of the *Highway Capacity Manual 6th Edition*.¹ This method assesses the effects of signal type, timing, phasing, and progression; vehicle mix; and geometrics on delay. LOS designations are based on the criterion of control or signal delay per vehicle. Control or signal delay is a measure of driver discomfort, frustration, and fuel consumption, and includes initial deceleration delay approaching the traffic signal, queue move-up time, stopped delay and final acceleration delay. **Table A1** summarizes the relationship between LOS and control delay. The tabulated control delay criterion may be applied in assigning LOS designations to individual lane groups, to individual intersection approaches, or to entire intersections.

Table A1
LEVEL-OF-SERVICE CRITERIA
FOR SIGNALIZED INTERSECTIONS¹

Level o	f Service
v/c ≤ 1	v/c > 1
A	F
В	F
C	F
D	F
E	F
F	F
	v/c ≤ 1 A B C D E

¹Source: *Highway Capacity Manual 6th Edition*, Transportation Research Board; Washington, DC; 2016.

_

¹Highway Capacity Manual 6th Edition; Transportation Research Board; Washington, DC; 2016.

Unsignalized Intersection Performance Measures

The six LOS designations for unsignalized intersections may be described as follows:

- LOS A represents a condition with little or no control delay to minor street traffic.
- LOS B represents a condition with short control delays to minor street traffic.
- LOS C represents a condition with average control delays to minor street traffic.
- LOS D represents a condition with long control delays to minor street traffic.
- LOS E represents operating conditions at or near capacity level, with very long control delays to minor street traffic.
- *LOS F* represents a condition where minor street demand volume exceeds capacity of an approach lane, with extreme control delays resulting.

The LOS designations of unsignalized intersections are determined by application of a procedure described in the *Highway Capacity Manual 6th Edition*.² LOS is measured in terms of average control delay. Mathematically, control delay is a function of the capacity and degree of saturation of the lane group and/or approach under study and is a quantification of motorist delay associated with traffic control devices such as traffic signals and STOP signs. Control delay includes the effects of initial deceleration delay approaching a STOP sign, stopped delay, queue move-up time, and final acceleration delay from a stopped condition. Definitions for LOS at unsignalized intersections are also given in the *Highway Capacity Manual 6th Edition*. **Table A2** summarizes the relationship between LOS and average control delay.

Table A2
LEVEL-OF-SERVICE CRITERIA FOR
UNSIGNALIZED INTERSECTIONS¹

	Level o	f Service
Average Control Delay (seconds per vehicle)	v/c ≤ 1	v/c > 1
×10.0	Δ	
≤ 10.0 10.1 to 15.0	A B	F F
15.1 to 25.0	С	F
25.1 to 35.0	D	F
35.1 to 50.0	E	F
>50.0	F	F

¹Source: *Highway Capacity Manual 6th Edition*, Transportation Research Board; Washington, DC; 2016.

² ibid

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway Weekday Morning Peak Hour

	۶	→	*	•	•	4	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	*	*		14	* 1>	
Traffic Volume (vph)	2	0	0	24	0	21	3	943	65	74	569	3
Future Volume (vph)	2	0	0	24	0	21	3	943	65	74	569	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0	• • •	0	0	• •	0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25		Ū	25			25		·	25		·
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt	1.00	1.00	1.00	1.00	1.00	0.850	1.00	0.990	0.50	0.51	0.999	0.50
Flt Protected		0.950			0.950	0.000	0.950	0.000		0.950	0.000	
Satd. Flow (prot)	0	1925	0	0	1851	1538	1925	3504	0	3400	3502	0
Flt Permitted	U	0.889	U	U	0.889	1550	0.950	3304	U	0.950	3302	U
Satd. Flow (perm)	0	1802	0	0	1732	1538	1925	3504	0	3400	3502	0
Right Turn on Red	U	1002	Yes	U	1732	Yes	1323	3304	Yes	3400	3302	Yes
Satd. Flow (RTOR)			163			103		13	163		1	163
Link Speed (mph)		30			30	103		40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	0.90	0.90	0.90	4%	0.90	5%	0.90	2%	2%	3%	3%	0.90
Heavy Vehicles (%)	2	0%	0%	27	0%	23	3	1048	72	3% 82	632	3
Adj. Flow (vph)	2	U	U	21	U	23	3	1040	12	02	032	3
Shared Lane Traffic (%) Lane Group Flow (vph)	0	2	0	0	27	23	3	1120	0	82	635	0
Enter Blocked Intersection	No	No	No	No	No	Zo No	No	No	No	No	No	No
Lane Alignment	Left	Left		Left	Left		Left	Left		Left	Left	
Median Width(ft)	Leit	0	Right	Leit		Right	Leit	24	Right	Leit	24	Right
Link Offset(ft)		0			0			0			0	
` ,		16			16			16			16	
Crosswalk Width(ft)		10			10			10			Yes	
Two way Left Turn Lane Headway Factor	0.92	0.92	0.92	0.92	0.92	1.00	0.92	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	0.92	9	15	0.52	9	15	1.00	9	1.00	1.00	9
Number of Detectors	13	1	9	13	1	1	13	1	9	13	1	9
Detector Template	'	1		'	'	'	ı	1		1	1	
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	50	50	50		50	50	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel	UI+EX	UI+EX		CI+EX	CI+⊏X	CI+EX	CI+EX	CI+EX		CI+EX	CI+EX	
	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0			0.0	0.0		0.0		0.0		
Detector 1 Queue (s)	0.0	0.0		0.0 0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)							0.0				0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	4	4		0	8	1	5	2		1	6	
Permitted Phases	4	4		8	0	8	_	0		4	^	
Detector Phase	4	4		8	8	1	5	2		1	6	
Switch Phase	0.0	0.0		0.0	0.0	0.0	0.0	15.0		0.0	15.0	
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	

MDM Transportation Consultants, Inc.

G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\1247 Baseline AM.syn

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway Weekday Morning Peak Hour

	۶	→	*	•	•	•	1	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	17.0	17.0		17.0	17.0	17.0	17.0	51.0		17.0	51.0	
Total Split (%)	20.0%	20.0%		20.0%	20.0%	20.0%	20.0%	60.0%		20.0%	60.0%	
Maximum Green (s)	12.0	12.0		12.0	12.0	12.0	12.0	45.0		12.0	45.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		9.3			9.3	17.7	9.0	61.9		12.2	74.9	
Actuated g/C Ratio		0.11			0.11	0.21	0.11	0.73		0.14	0.88	
v/c Ratio		0.01			0.14	0.06	0.01	0.44		0.17	0.21	
Control Delay		33.5			36.0	0.3	34.3	7.7		32.3	2.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		33.5			36.0	0.3	34.3	7.7		32.3	2.9	
LOS		С			D	Α	С	Α		С	Α	
Approach Delay		33.5			19.6			7.8			6.2	
Approach LOS		С			В			Α			Α	
90th %ile Green (s)	9.4	9.4		9.4	9.4	12.0	8.0	47.6		12.0	51.6	
90th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Min	Coord		Hold	Coord	
70th %ile Green (s)	8.0	8.0		8.0	8.0	12.0	0.0	49.0		12.0	66.0	
70th %ile Term Code	Hold	Hold		Min	Min	Hold	Skip	Coord		Hold	Coord	
50th %ile Green (s)	0.0	0.0		0.0	0.0	12.0	0.0	62.0		12.0	79.0	
50th %ile Term Code	Skip	Skip		Skip	Skip	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	0.0	0.0		0.0	0.0	12.0	0.0	62.0		12.0	79.0	
30th %ile Term Code	Skip	Skip		Skip	Skip	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	0.0	0.0		0.0	0.0	0.0	0.0	79.0		0.0	79.0	
10th %ile Term Code	Skip	Skip		Skip	Skip	Skip	Skip	Coord		Skip	Coord	
Queue Length 50th (ft)		1			13	0	2	94		20	0	
Queue Length 95th (ft)		7			37	0	10	235		39	102	
Internal Link Dist (ft)		338			260			186			439	
Turn Bay Length (ft)							220			240		
Base Capacity (vph)		275			264	414	294	2556		520	3087	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.01			0.10	0.06	0.01	0.44		0.16	0.21	
Intersection Summary												

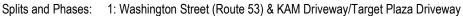
Area Type:

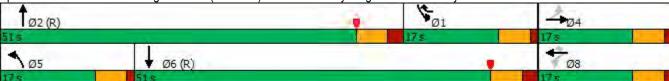
Other

Cycle Length: 85

Actuated Cycle Length: 85

Offset: 11 (13%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow


Natural Cycle: 50


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.44

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway Weekday Morning Peak Hour

Intersection Signal Delay: 7.5 Intersection Capacity Utilization 52.3% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service A

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1			414
Traffic Vol, veh/h	1	27	947	2	32	644
Future Vol, veh/h	1	27	947	2	32	644
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	0	_	_	0
Grade, %	, # 2	_	0	_	_	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	09	11	3	09	0	3
Mvmt Flow	1	30	1064	2	36	724
INIVIIIL FIOW	I	30	1004	2	30	1 24
Major/Minor I	Minor1	N	Major1	<u> </u>	Major2	
Conflicting Flow All	1499	533	0	0	1066	0
Stage 1	1065	_	-	_	_	_
Stage 2	434	_	_	_	_	_
Critical Hdwy	6.8	7.12	_	_	4.1	_
Critical Hdwy Stg 1	5.8		_	_		_
Critical Hdwy Stg 2	5.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.41	_		2.2	
Pot Cap-1 Maneuver	115	469	_	_	661	-
•		409	-	-	001	-
Stage 1	297	-	-	-	-	-
Stage 2	627	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	105	469	-	-	661	-
Mov Cap-2 Maneuver	262	-	-	-	-	-
Stage 1	297	-	-	-	-	-
Stage 2	570	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.5		0		0.9	
HCM LOS	В		-			
	_					
Minor Lane/Major Mvm	t	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)				456	661	-
HCM Lane V/C Ratio		_	_		0.054	_
HCM Control Delay (s)		_	_	13.5	10.8	0.4
HCM Lane LOS		-	-	13.5 B	В	0. 4 A
		-	-	0.2	0.2	
HCM 95th %tile Q(veh)		-	-	U.Z	U.Z	-

Intersection													
Int Delay, s/veh	1.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		474			414			4			4		
Traffic Vol, veh/h	22	105	11	0	32	0	3	0	0	1	0	10	
Future Vol, veh/h	22	105	11	0	32	0	3	0	0	1	0	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	_	-	None	-	<u>'</u> -	None .	<u>'</u> -		None .	
Storage Length	-	-	-	-	-	_	-	-	_	-	-	_	
/eh in Median Storage	,# -	0	-	-	0	_	-	0	_	-	0	_	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	73	73	73	73	73	73	73	73	73	73	73	73	
Heavy Vehicles, %	5	1	0	0	3	0	0	0	0	0	0	10	
/lvmt Flow	30	144	15	0	44	0	4	0	0	1	0	14	
4 - i /h 4i	Made 4			4-:- 0			d:4			4: · · · ·			
	Major1			Major2			Minor1			/linor2		•	
Conflicting Flow All	44	0	0	159	0	0	234	256	80	176	263	22	
Stage 1	-	-	-	-	-	-	212	212	-	44	44	-	
Stage 2	-	-	-	-	-	-	22	44	-	132	219		
ritical Hdwy	4.2	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	7.1	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
ritical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
ollow-up Hdwy	2.25	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.4	
ot Cap-1 Maneuver	1541	-	-	1433	-	-	706	651	971	776	646	1024	
Stage 1	-	-	-	-	-	-	776	731	-	970	862	-	
Stage 2	-	-	-	-	-	-	999	862	-	864	726	-	
latoon blocked, %	4544	-	-	4.400	-	-	000	007	074	704	000	4004	
Nov Cap-1 Maneuver	1541	-	-	1433	-	-	686	637	971	764	632	1024	
Mov Cap-2 Maneuver	-	-	-	-	-	-	686	637	-	764	632	-	
Stage 1	-	-	-	-	-	-	760	716	-	950	862	-	
Stage 2	-	-	-	-	-	-	986	862	-	846	711	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	1.3			0			10.3			8.7			
HCM LOS							В			Α			
Minor Long/Maior Minor		NIDI 1	EDI		EDD	WDI	WDT	MDD	CDI4				
Minor Lane/Major Mvm	l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :					
Capacity (veh/h)		686	1541	-	-	1433	-	-	993				
HCM Lane V/C Ratio		0.006	0.02	-	-	-	-	-	0.015				
HCM Control Delay (s)		10.3	7.4	0.1	-	0	-	-	8.7				
HCM Lane LOS		В	A	Α	-	A	-	-	A				
HCM 95th %tile Q(veh)		0	0.1	-	-	0	-	-	0				

	۶	→	*	•	←	4	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	*	*		1/4	1	
Traffic Volume (vph)	5	0	3	149	0	80	0	862	108	133	1266	3
Future Volume (vph)	5	0	3	149	0	80	0	862	108	133	1266	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0	• • •	0	0	• • •	0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25		· ·	25		'	25		Ū	25		Ū
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt	1.00	0.949	1.00	1.00	1.00	0.850	1.00	0.983	0.55	0.51	0.55	0.55
Flt Protected		0.970			0.950	0.000		0.903		0.950		
Satd. Flow (prot)	0	1866	0	0	1925	1615	2027	3549	0	3467	3574	0
Flt Permitted	U	0.856	U	U	0.752	1015	2021	3349	U	0.950	3374	U
	0		0	0		1615	2027	2540	0		2574	^
Satd. Flow (perm)	0	1646	0	0	1524	1615	2027	3549	0	3467	3574	0
Right Turn on Red		450	Yes			Yes		40	Yes			Yes
Satd. Flow (RTOR)		153				87		19			40	
Link Speed (mph)		30			30			40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	0%
Adj. Flow (vph)	5	0	3	152	0	82	0	880	110	136	1292	3
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	8	0	0	152	82	0	990	0	136	1295	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											Yes	
Headway Factor	0.92	0.92	0.92	0.92	0.92	1.00	0.92	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	1		1	1	
Detector Template												
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	50	50	50		50	50	
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OI · LX	OI · LX		OI · LX	OI · LX	OI · LX	OI · LX	OI · LX		OI · LX	OI · LX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	4	4		0	8	1	5	2		1	6	
Permitted Phases	4	4		8	^	8	_	^		4	^	
Detector Phase	4	4		8	8	1	5	2		1	6	
Switch Phase					. -							
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	

MDM Transportation Consultants, Inc.

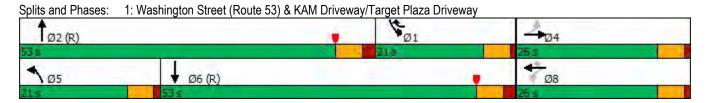
G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\1247 Baseline PM.syn

	۶	→	*	•	+	•	1	†	-	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	26.0	26.0		26.0	26.0	21.0	21.0	53.0		21.0	53.0	
Total Split (%)	26.0%	26.0%		26.0%	26.0%	21.0%	21.0%	53.0%		21.0%	53.0%	
Maximum Green (s)	21.0	21.0		21.0	21.0	16.0	16.0	47.0		16.0	47.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		16.1			16.1	37.1		53.9		17.0	74.9	
Actuated g/C Ratio		0.16			0.16	0.37		0.54		0.17	0.75	
v/c Ratio		0.02			0.62	0.13		0.52		0.23	0.48	
Control Delay		0.1			49.4	4.2		16.3		37.1	6.2	
Queue Delay		0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay		0.1			49.4	4.2		16.3		37.1	6.2	
LOS		Α			D	Α		В		D	Α	
Approach Delay		0.1			33.6			16.3			9.1	
Approach LOS		Α			С			В			Α	
90th %ile Green (s)	21.0	21.0		21.0	21.0	16.0	0.0	47.0		16.0	68.0	
90th %ile Term Code	Hold	Hold		Max	Max	Hold	Skip	Coord		Hold	Coord	
70th %ile Green (s)	17.7	17.7		17.7	17.7	16.0	0.0	50.3		16.0	71.3	
70th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
50th %ile Green (s)	15.2	15.2		15.2	15.2	16.0	0.0	52.8		16.0	73.8	
50th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	12.7	12.7		12.7	12.7	16.0	0.0	55.3		16.0	76.3	
30th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	9.1	9.1		9.1	9.1	16.0	0.0	58.9		16.0	79.9	
10th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
Queue Length 50th (ft)		0			91	0		197		39	142	
Queue Length 95th (ft)		0			147	25		288		66	232	
Internal Link Dist (ft)		338			260			186			439	
Turn Bay Length (ft)										240		
Base Capacity (vph)		481			335	654		1920		589	2675	
Starvation Cap Reductn		0			0	0		0		0	0	
Spillback Cap Reductn		0			0	0		0		0	0	
Storage Cap Reductn		0			0	0		0		0	0	
Reduced v/c Ratio		0.02			0.45	0.13		0.52		0.23	0.48	
Intersection Summary												

Intersection Summary

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100


Offset: 91 (91%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated

Intersection Signal Delay: 13.9 Intersection Capacity Utilization 64.5% Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

-						
Intersection						
Int Delay, s/veh	2.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	וטייי	† ‡	ווטוו	ODL	41
Traffic Vol, veh/h	8	132	949	4	58	1351
Future Vol, veh/h	8	132	949	4	58	1351
	0	0				
Conflicting Peds, #/hr			0 Eroo	0 Eroo	0 Eroo	0 Eroo
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	0	1	1	0	2	1
Mvmt Flow	8	138	989	4	60	1407
Majay/Mina-	\		1-14		Ania =0	
	Minor1		Major1		Major2	
Conflicting Flow All	1815	497	0	0	993	0
Stage 1	991	-	-	-	-	-
Stage 2	824	-	-	-	-	-
Critical Hdwy	6.8	6.92	-	-	4.14	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	_	_	_	-	_
Follow-up Hdwy	3.5	3.31	_	_	2.22	_
Pot Cap-1 Maneuver	71	521	_	_	692	_
Stage 1	325	-	_	_	-	_
Stage 2	396	_				_
_	390	-	-	-	-	-
Platoon blocked, %	40	504	-	-	000	-
Mov Cap-1 Maneuver	43	521	-	-	692	-
Mov Cap-2 Maneuver	186	-	-	-	-	-
Stage 1	325	-	-	-	-	-
Stage 2	239	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	16		0		2.4	
HCM LOS	C		J		1	
	J					
Minor Long/Mailes M.	.1	NDT	NIDDI	MDI 4	CDI	CDT
Minor Lane/Major Mvm	IĮ	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	472	692	-
HCM Lane V/C Ratio		-	-	0.309		-
HCM Control Delay (s)		-	-	16	10.7	2
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh))	-	-	1.3	0.3	-
, ,						

Intersection Int Delay, s/veh	2.8											
ini Delay, S/Ven												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		47			47			4			4	
Traffic Vol, veh/h	55	186	4	1	141	2	19	1	0	2	0	63
Future Vol, veh/h	55	186	4	1	141	2	19	1	0	2	0	63
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	_	_	0	-
Grade, %	· -	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	0	2	0	0	1	0	0	0	0	0	0	0
Mvmt Flow	64	216	5	1	164	2	22	1	0	2	0	73
			=			-	_		-	•		
Major/Minor I	Major1		ı	Major2		ı	Minor1		N	Minor2		
Conflicting Flow All	166	0	0	221	0	0	431	515	111	404	516	83
Stage 1	100		-		J	-	347	347	-	167	167	00
Stage 2	-	-	-	-	-	-	84	168	-	237	349	-
Critical Hdwy	4.1	-	-	4.1	-	_	7.5	6.5	6.9	7.5	6.5	6.9
	4.1	-	-	4.1	-	_	6.5	5.5		6.5	5.5	0.9
Critical Hdwy Stg 1	-	-	-	-	-		6.5	5.5	-	6.5	5.5 5.5	-
Critical Hdwy Stg 2	-	-	-	- 0.0	-	-			- 2 2			2.2
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1424	-	-	1360	-	-	513	466	927	536	466	966
Stage 1	-	-	-	-	-	-	648	638	-	824	764	-
Stage 2	-	-	-	-	-	-	920	763	-	751	637	-
Platoon blocked, %	4.45.	-	-	4000	-	-	4	,	00-	=		
Mov Cap-1 Maneuver	1424	-	-	1360	-	-	455	442	927	513	442	966
Mov Cap-2 Maneuver	-	-	-	-	-	-	455	442	-	513	442	-
Stage 1	-	-	-	-	-	-	615	605	-	782	763	-
Stage 2	-	-	-	-	-	-	849	762	-	711	605	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.8			0.1			13.4			9.2		
HCM LOS							В			А		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)	- '	454	1424			1360	-		940			
HCM Lane V/C Ratio		0.051	0.045	_	-	0.001	-	-	0.08			
HCM Control Delay (s)		13.4	7.6	0.1		7.6	0		9.2			
HCM Lane LOS		13.4 B	7.0 A	Α	-	7.0 A	A	-	9.2 A			
HCM 95th %tile Q(veh)	١	0.2	0.1	А	-	0	A -	-	0.3			
HOW SOME WIVEN	1	0.2	U. I	-	-	U	-	-	0.3			

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway Saturday Midday Peak Hour

	٠	→	•	•	•	*	4	†	~	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	*	* 1>		44	* 1>	
Traffic Volume (vph)	1	1	2	127	0	134	3	1118	171	216	1112	1
Future Volume (vph)	1	1	2	127	0	134	3	1118	171	216	1112	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0		0	0		0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt		0.932				0.850		0.980	0.00	0.0.	0.00	0.00
Flt Protected		0.988			0.950	0.000	0.950	0.000		0.950		
Satd. Flow (prot)	0	1866	0	0	1906	1583	1925	3503	0	3467	3574	0
Flt Permitted	·	0.945	v	v	0.755	1000	0.950	0000	Ū	0.950	0011	J
Satd. Flow (perm)	0	1785	0	0	1515	1583	1925	3503	0	3467	3574	0
Right Turn on Red	U	1700	Yes	U	1010	Yes	1020	0000	Yes	0407	0014	Yes
Satd. Flow (RTOR)		2	163			92		28	163			163
Link Speed (mph)		30			30	32		40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	0.97	0.97	0.97	1%	0.97	2%	0.97	1%	1%	1%	1%	0.97
• • • • • • • • • • • • • • • • • • • •	1	1	2	131	0%	138	3	1153	176	223	1146	1
Adj. Flow (vph)	I	1	2	131	U	130	3	1133	170	223	1140	1
Shared Lane Traffic (%) Lane Group Flow (vph)	0	4	0	0	131	138	3	1329	0	223	1147	0
Enter Blocked Intersection			No			No	No	No	No	ZZ3 No	1147 No	No
	No Left	No Left		No Left	No			Left		Left		
Lane Alignment	Leit		Right	Leit	Left	Right	Left	24	Right	Leit	Left 24	Right
Median Width(ft) Link Offset(ft)		0 0			0			0			0	
` '		16			16			16			16	
Crosswalk Width(ft)		10			10			10				
Two way Left Turn Lane	0.92	0.92	0.92	0.92	0.92	1.00	0.92	1.00	1.00	1.00	Yes 1.00	1.00
Headway Factor	15	0.92	0.92	15	0.92		15	1.00	1.00	1.00	1.00	1.00 9
Turning Speed (mph) Number of Detectors	10	1	9	15	1	9 1	15	4	9	15	4	9
	ı	1		ı	ı	ı	I	1		I	1	
Detector Template	50	50		50	50	50	50	50		50	EΩ	
Leading Detector (ft)	_				0		50			50	50	
Trailing Detector (ft)	0	0		0		0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	50	50	50		50	50	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases		4		•	8	1	5	2		1	6	
Permitted Phases	4			8	_	8	_	•			•	
Detector Phase	4	4		8	8	1	5	2		1	6	
Switch Phase	0.0	0.0		0.0	2.2	2.2	0.0	45.0		0.0	45.0	
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	

MDM Transportation Consultants, Inc.
G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\1247 Baseline SAT.syn

Minimum Split (s) 13.0 13.0 13.0 13.0 13.0 21.0 13.0 21.0 Total Split (s) 22.0 22.0 22.0 17.0 17.0 56.0 17.0 56.0 Total Split (%) 23.2% 23.2% 23.2% 17.9% 17.9% 58.9% 17.9% 58.9% Maximum Green (s) 17.0 17.0 17.0 12.0 50.0 12.0 50.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		•	→	*	•	—	•	1	†	~	-	ļ	1
Total Split (s) 22.0 22.0 22.0 22.0 17.0 56.0 17.0 56.0 Total Split (%) 23.2% 23.2% 23.2% 17.9% 17.9% 58.9% 17.9% 58.9% Maximum Green (s) 17.0 17.0 17.0 12.0 50.0 12.0 50.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Lane Group			EBR		WBT	WBR	NBL		NBR		SBT	SBR
Total Split (%) 23.2% 23.2% 23.2% 23.2% 17.9% 58.9% 17.9% 58.9% Maximum Green (s) 17.0 17.0 17.0 12.0 12.0 50.0 12.0 50.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Minimum Split (s)												
Maximum Green (s) 17.0 17.0 17.0 12.0 50.0 12.0 50.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Total Split (s)							17.0			17.0		
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Total Split (%)	23.2%	23.2%		23.2%	23.2%	17.9%				17.9%		
$\langle \cdot \rangle$	Maximum Green (s)	17.0	17.0		17.0		12.0	12.0			12.0		
	Yellow Time (s)	4.0	4.0		4.0		4.0	4.0			4.0		
$\mathcal{N}_{\mathcal{I}}$	All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	, , ,												
Total Lost Time (s) 4.0 4.0 4.0 5.0 4.0 5.0	. ,		4.0			4.0	4.0	4.0			4.0	5.0	
Lead/Lag Lag Lead Lead Lag Lag	Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize? Yes Yes Yes Yes Yes													
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0													
Recall Mode None None None None None C-Max None C-Max		None			None								
Act Effct Green (s) 14.1 14.1 31.1 9.0 54.9 13.0 69.3													
Actuated g/C Ratio 0.15 0.15 0.33 0.09 0.58 0.14 0.73	•												
v/c Ratio 0.02 0.58 0.24 0.02 0.65 0.47 0.44													
Control Delay 26.5 47.9 9.5 39.3 15.7 41.5 6.9	•												
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•												
Total Delay 26.5 47.9 9.5 39.3 15.7 41.5 6.9													
LOS C D A D B D A							Α	D			D		
Approach Delay 26.5 28.2 15.8 12.6													
Approach LOS C C B B													
90th %ile Green (s) 17.0 17.0 17.0 12.0 8.0 50.0 12.0 54.0	` ,												
90th %ile Term Code Hold Hold Max Max Max Min Coord Max Coord													
70th %ile Green (s) 15.7 15.7 15.7 15.7 12.0 0.0 51.3 12.0 68.3	` ,												
70th %ile Term Code Hold Hold Gap Gap Max Skip Coord Max Coord													
50th %ile Green (s) 13.4 13.4 13.4 12.0 0.0 53.6 12.0 70.6													
50th %ile Term Code Hold Hold Gap Gap Hold Skip Coord Hold Coord													
30th %ile Green (s) 11.2 11.2 12.0 0.0 55.8 12.0 72.8	` ,												
30th %ile Term Code Hold Hold Gap Gap Hold Skip Coord Hold Coord													
10th %ile Green (s) 8.0 8.0 8.0 12.0 0.0 59.0 12.0 76.0	` ,												
10th %ile Term Code Hold Hold Min Min Hold Skip Coord Hold Coord		Hold			Min								
Queue Length 50th (ft) 1 74 19 2 262 64 107	• , ,												
Queue Length 95th (ft) 10 128 57 11 368 101 266							57	11			101		
Internal Link Dist (ft) 338 260 186 439			338			260		000	186		0.40	439	
Turn Bay Length (ft) 220 240			000			007	570		0007			0000	
Base Capacity (vph) 339 287 579 263 2037 474 2608			_										
Starvation Cap Reductn 0 0 0 0 0 0							_						
Spillback Cap Reductn 0 0 0 0 0 0								-					
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•						-				
Reduced v/c Ratio 0.01 0.46 0.24 0.01 0.65 0.47 0.44			0.01			0.46	0.24	0.01	0.65		0.47	0.44	

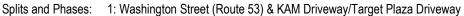
Intersection Summary

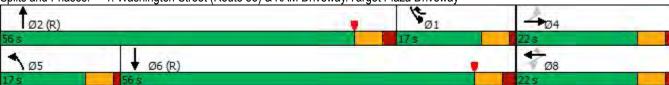
Area Type: Other

Cycle Length: 95

Actuated Cycle Length: 95

Offset: 90 (95%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow


Natural Cycle: 60


Control Type: Actuated-Coordinated

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway

Saturday Midday Peak Hour

Intersection Signal Delay: 15.4 Intersection Capacity Utilization 67.6% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service C

Int Delay, s/veh 5.1 Movement WBL WBR NBT NBR SBL SBT SBT	
Movement WBL WBR NBT NBR SBL SBT Lane Configurations Y Traffic Vol, veh/h 12 195 1253 8 83 1310 Future Vol, veh/h 12 195 1253 8 83 1310 Conflicting Peds, #/hr 0 0 0 0 0	
Lane Configurations ** ** Traffic Vol, veh/h 12 195 1253 8 83 1310 Future Vol, veh/h 12 195 1253 8 83 1310 Conflicting Peds, #/hr 0 0 0 0 0	
Traffic Vol, veh/h 12 195 1253 8 83 1310 Future Vol, veh/h 12 195 1253 8 83 1310 Conflicting Peds, #/hr 0 0 0 0 0 0	
Future Vol, veh/h 12 195 1253 8 83 1310 Conflicting Peds, #/hr 0 0 0 0 0 0	
Conflicting Peds, #/hr 0 0 0 0 0 0	
Sign Control Stop Stop Free Free Free Free	
RT Channelized - None - None - None	
Storage Length 0	
Veh in Median Storage, # 2 - 0 0	
Grade, % 0 - 0 - 0	
Peak Hour Factor 94 94 94 94 94	
Heavy Vehicles, % 0 1 1 0 1 1	
Mymt Flow 13 207 1333 9 88 1394	
Major/Minor Minor1 Major1 Major2	
Major/Minor Minor1 Major1 Major2 Conflicting Flow All 2211 671 0 0 1342 0	
Stage 1 1338	
•	
Critical Hdwy Stg 1 5.8 Critical Hdwy Stg 2 5.8	
Follow-up Hdwy 3.5 3.31 2.21 -	
Pot Cap-1 Maneuver 38 401 515 -	
·	
Stage 1 213 Stage 2 374	
Platoon blocked, %	
Mov Cap-1 Maneuver ~ 9 401 515 -	
·	
·	
v	
Stage 2 91	
Approach MD ND CD	
Approach WB NB SB	
HCM Control Delay, s 37 0 5	
HCM LOS E	
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT	
Capacity (veh/h) 323 515 -	
HCM Lane V/C Ratio 0.682 0.171 -	
HCM Control Delay (s) 37 13.4 4.5	
HCM Lane LOS E B A	
HCM 95th %tile Q(veh) 4.7 0.6 -	
Notes	
~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon	

ntersection													
nt Delay, s/veh	3.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	LUL	414	LDIX	WDL	472	W DIX	.,,,,,	4	INDIX	OBL	4	OBIT	
affic Vol, veh/h	99	276	6	0	151	6	7	2	0	15	2	101	
ture Vol, veh/h	99	276	6	0	151	6	7	2	0	15	2	101	
nflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
n Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
Channelized	-	-	None	-	-	None	·-	· -	None .	·-	·-	None	
rage Length	-	-	-	-	-	-	-	-	-	-	-	-	
in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
ide, %	-	0	-	-	0	-	-	0	-	-	0	-	
ak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89	
avy Vehicles, %	0	0	0	0	2	0	0	0	0	0	0	0	
nt Flow	111	310	7	0	170	7	8	2	0	17	2	113	
or/Minor N	/lajor1		N	Major2		ı	Minor1		N	Minor2			
nflicting Flow All	177	0	0	317	0	0	622	713	159	552	713	89	
Stage 1	111	-	-	317	-	-	536	536	-	174	174	-	
Stage 2	_	_	_	_	_	_	86	177	_	378	539	_	
cal Hdwy	4.1	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	6.9	
cal Hdwy Stg 1		_	_		_	_	6.5	5.5	-	6.5	5.5	-	
cal Hdwy Stg 2	_	_	_	_	_	_	6.5	5.5	_	6.5	5.5	_	
ow-up Hdwy	2.2	_	_	2.2	_	_	3.5	4	3.3	3.5	4	3.3	
Cap-1 Maneuver	1411	_	_	1255	_	_	375	360	864	421	360	958	
Stage 1	_	_	_	-	_	-	501	527	-	817	759	-	
Stage 2	-	-	-	-	-	-	918	756	-	621	525	-	
oon blocked, %		-	-		-	-							
Cap-1 Maneuver	1411	-	-	1255	-	-	305	325	864	388	325	958	
/ Cap-2 Maneuver	-	-	-	-	-	-	305	325	-	388	325	-	
Stage 1	-	-	-	-	-	-	453	476	-	739	759	-	
Stage 2	-	-	-	-	-	-	807	756	-	559	475	-	
roach	EB			WB			NB			SB			
M Control Delay, s	2.2			0			17			10.5			
I LOS	۲.۶			J			C			В			
or Lang/Major Mare		NBLn1	EDI	EDT	EBR	וחאא	\\/DT	WDD	CDI 51				
nor Lane/Major Mvmt	ι I		EBL	EBT		WBL	WBT	WBR :					
pacity (veh/h)		309	1411	-	-	1255	-	-	785				
M Cantrol Doloy (a)		0.033		-	-	-	-	-	0.169				
M Control Delay (s)		17 C	7.8	0.2	-	0 A	-	-	10.5				
M Lane LOS M 95th %tile Q(veh)		0.1	A 0.3	Α -	-	A 0	-	-	B 0.6				
ivi april wille M(vell)		0.1	0.5	-	-	U	-	-	0.0				

	۶	→	•	•	•	•	4	†	/	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7	ሻ	4 1>		ሻሻ	↑ ↑	
Traffic Volume (vph)	2	0	0	26	Ö	22	3	1004	69	77	613	3
Future Volume (vph)	2	0	0	26	0	22	3	1004	69	77	613	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0		0	0		0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt						0.850		0.990	0.70	0.77	0.999	0.70
Flt Protected		0.950			0.950	0.000	0.950	0.770		0.950	0.7.7	
Satd. Flow (prot)	0	1925	0	0	1851	1538	1925	3504	0	3400	3502	0
Flt Permitted	O	0.889	O	O	0.889	1000	0.950	0001	O	0.950	0002	Ū
Satd. Flow (perm)	0	1802	0	0	1732	1538	1925	3504	0	3400	3502	0
Right Turn on Red	U	1002	Yes	U	1732	Yes	1723	3304	Yes	3400	3302	Yes
Satd. Flow (RTOR)			163			103		13	163		1	163
Link Speed (mph)		30			30	103		40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0.90	0.90	0.90	4%	0.90	5%	0.90	2%	2%	3%	3%	0.90
	2	0%	0%	29	0%	24	3	1116	276 77	3% 86	5% 681	3
Adj. Flow (vph)	Z	U	U	29	U	24	3	1110	11	00	001	3
Shared Lane Traffic (%) Lane Group Flow (vph)	0	2	0	0	29	24	3	1193	0	86	684	0
Enter Blocked Intersection	0 No	No	No	No		No	No	No	No		004 No	No
	No Left			Left	No Left					No Left		
Lane Alignment	Len	Left	Right	Leit		Right	Left	Left 24	Right	Len	Left 24	Right
Median Width(ft)		0			0							
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16 Vac	
Two way Left Turn Lane	0.00	0.92	0.92	0.00	0.00	1.00	0.00	1 00	1 00	1 00	Yes 1.00	1 00
Headway Factor	0.92	0.92	0.92	0.92	0.92		0.92	1.00	1.00 9	1.00	1.00	1.00 9
Turning Speed (mph)	15	1	9	15	1	9	15	1	9	15	1	9
Number of Detectors	1	1		1	1	1	1	1		1	1	
Detector Template	го	го		го	го	Γ0	го	го		Γ0	го	
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	50	50	50		50	50	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel					0.0	0.0						
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases		4			8	1	5	2		1	6	
Permitted Phases	4	_		8	_	8	_	_			_	
Detector Phase Switch Phase	4	4		8	8	1	5	2		1	6	
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	

 $\label{lem:mdm} \mbox{MDM Transportation Consultants, Inc.} \\ \mbox{G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\1247 No Build AM.syn} \\$

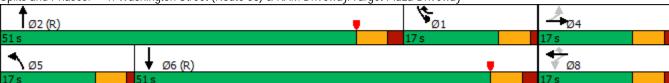
	۶	→	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	17.0	17.0		17.0	17.0	17.0	17.0	51.0		17.0	51.0	
Total Split (%)	20.0%	20.0%		20.0%	20.0%	20.0%	20.0%	60.0%		20.0%	60.0%	
Maximum Green (s)	12.0	12.0		12.0	12.0	12.0	12.0	45.0		12.0	45.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		9.3			9.3	17.7	9.0	61.9		12.2	74.9	
Actuated g/C Ratio		0.11			0.11	0.21	0.11	0.73		0.14	0.88	
v/c Ratio		0.01			0.15	0.06	0.01	0.47		0.18	0.22	
Control Delay		33.5			36.0	0.3	34.3	8.0		32.4	2.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		33.5			36.0	0.3	34.3	8.0		32.4	2.9	
LOS		С			D	Α	С	Α		С	Α	
Approach Delay		33.5			19.8			8.1			6.2	
Approach LOS		С			В			Α			Α	
90th %ile Green (s)	9.6	9.6		9.6	9.6	12.0	8.0	47.4		12.0	51.4	
90th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Min	Coord		Hold	Coord	
70th %ile Green (s)	8.1	8.1		8.1	8.1	12.0	0.0	48.9		12.0	65.9	
70th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
50th %ile Green (s)	0.0	0.0		0.0	0.0	12.0	0.0	62.0		12.0	79.0	
50th %ile Term Code	Skip	Skip		Skip	Skip	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	0.0	0.0		0.0	0.0	12.0	0.0	62.0		12.0	79.0	
30th %ile Term Code	Skip	Skip		Skip	Skip	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	0.0	0.0		0.0	0.0	0.0	0.0	79.0		0.0	79.0	
10th %ile Term Code	Skip	Skip		Skip	Skip	Skip	Skip	Coord		Skip	Coord	
Queue Length 50th (ft)		1			14	0	2	104		20	0	
Queue Length 95th (ft)		7			39	0	10	260		41	112	
Internal Link Dist (ft)		338			260		000	186		0.40	439	
Turn Bay Length (ft)		075			2/4	415	220	2552		240	2004	
Base Capacity (vph)		275			264	415	294	2553		520	3084	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.01			0.11	0.06	0.01	0.47		0.17	0.22	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 85


Offset: 11 (13%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 55

Control Type: Actuated-Coordinated

Intersection Signal Delay: 7.7 Intersection Capacity Utilization 54.1% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service A

Splits and Phases: 1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway

Intersection						
Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		†			41
Traffic Vol, veh/h	1	30	1008	2	36	691
Future Vol, veh/h	1	30	1008	2	36	691
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e,# 2	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	11	3	0	0	3
Mvmt Flow	1	34	1133	2	40	776
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1602	568	0		1135	0
Stage 1	1134	500	U	U	1133	U
Stage 2	468	-	-	-	-	-
Critical Hdwy	6.8	7.12	-	-	4.1	-
Critical Hdwy Stg 1	5.8	7.12	-	-	4.1	-
Critical Hdwy Stg 2	5.8		-	-	-	-
Follow-up Hdwy	3.5	3.41	-	-	2.2	-
	98	444	-	-	623	-
Pot Cap-1 Maneuver	273	444	-	-	023	-
Stage 1	602	-	-	-	-	-
Stage 2	002	-	-	-	-	-
Platoon blocked, %	. 07	444	-	-	(22	-
Mov Cap 3 Manager		444	-	-	623	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	273	-	-	-	-	-
Stage 2	534	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.1		0		1.1	
HCM LOS	В					
				MRI n1	SBL	SBT
Minor Lane/Major Mvi	mt	NBT	NBR\	VULIII		
Minor Lane/Major Mvi	mt	NBT -	NBR\			_
Capacity (veh/h)	mt		-	432	623	-
Capacity (veh/h) HCM Lane V/C Ratio			-	432 0.081	623 0.065	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s			-	432 0.081 14.1	623 0.065 11.2	0.6
Capacity (veh/h) HCM Lane V/C Ratio	s)		-	432 0.081	623 0.065	-

Intersection												
Int Delay, s/veh	1.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		474			414			4			4	
Traffic Vol, veh/h	26	109	11	0	33	0	3	0	0	1	0	11
Future Vol, veh/h	26	109	11	0	33	0	3	0	0	1	0	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	73	73	73	73	73	73	73	73	73	73	73	73
Heavy Vehicles, %	5	1	0	0	3	0	0	0	0	0	0	10
Mvmt Flow	36	149	15	0	45	0	4	0	0	1	0	15
Major/Minor N	/lajor1		١	Major2		N	Minor1		N	Minor2		
Conflicting Flow All	45	0	0	164	0	0	252	274	82	192	281	23
Stage 1	-	-	-	-	-	-	229	229	-	45	45	-
Stage 2	_	_	_	_	_	_	23	45	_	147	236	_
Critical Hdwy	4.2	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	7.1
Critical Hdwy Stg 1	-	_	_	-	_	_	6.5	5.5	-	6.5	5.5	
Critical Hdwy Stg 2	_	_	_	_	_	_	6.5	5.5	_	6.5	5.5	_
Follow-up Hdwy	2.25	_	_	2.2	_	_	3.5	4	3.3	3.5	4	3.4
Pot Cap-1 Maneuver	1540	_	_	1427	_	_	686	637	968	756	631	1023
Stage 1		_	_		_	_	759	718	-	969	861	. 525
Stage 2	_	_	_	_	_	_	998	861	_	847	713	_
Platoon blocked, %		_	_		_	_		50.		J 17		
Mov Cap-1 Maneuver	1540	_	_	1427	_	_	663	620	968	741	615	1023
Mov Cap-2 Maneuver	-	_	_	-	_	_	663	620	-	741	615	-
Stage 1	-	_	_	_	_	_	739	699	_	944	861	_
Stage 2	_	_	_	_	_	_	983	861	_	825	694	_
J · -										-=-		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.4			0			10.5			8.7		
HCM LOS	11			U			В			Α		
1.0111 200							D			, ,		
Minor Lane/Major Mvm	t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBI n1			
Capacity (veh/h)		663	1540		-	1427	-	-	992			
HCM Lane V/C Ratio			0.023	_		1421	_		0.017			
HCM Control Delay (s)		10.5	7.4	0.1	_	0	_	_	8.7			
HCM Lane LOS		В	Α.4	Α	_	A	_	_	Α			
HCM 95th %tile Q(veh)		0	0.1	-	_	0	_	_	0.1			
		0	5.1			J			5.1			

	٠	→	•	•	•	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	ሻ	∱ }		44	∱ }	
Traffic Volume (vph)	5	0	3	158	Ö	83	Ö	969	116	138	1389	3
Future Volume (vph)	5	0	3	158	0	83	0	969	116	138	1389	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0		0	0		0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt		0.949				0.850		0.984				
Flt Protected		0.970			0.950					0.950		
Satd. Flow (prot)	0	1866	0	0	1925	1615	2027	3552	0	3467	3574	0
Flt Permitted		0.856			0.752					0.950		
Satd. Flow (perm)	0	1646	0	0	1524	1615	2027	3552	0	3467	3574	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		153				87		18				
Link Speed (mph)		30			30			40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	0%
Adj. Flow (vph)	5	0	3	161	0	85	0	989	118	141	1417	3
Shared Lane Traffic (%)	· ·	ŭ	Ū		· ·		· ·	, , ,				Ū
Lane Group Flow (vph)	0	8	0	0	161	85	0	1107	0	141	1420	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	9		0			24	9		24	9
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											Yes	
Headway Factor	0.92	0.92	0.92	0.92	0.92	1.00	0.92	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	1		1	1	
Detector Template												
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	50	50	50		50	50	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	01. ZX	01.2.1		0 <u></u>	51. ZX	01.2%	0	0		01. 27.	01.21	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	1 01111	4		1 01111	8	1	5	2		1	6	
Permitted Phases	4			8	3	8	J	_			J	
Detector Phase	4	4		8	8	1	5	2		1	6	
Switch Phase	7	٦		U	0	'	5	۷		'	J	
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	

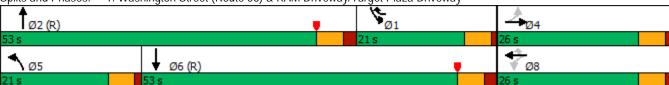
 $\label{lem:mdm} \mbox{MDM Transportation Consultants, Inc.} \\ \mbox{G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\1247 No Build PM.syn} \\$

	•	→	*	€	+	•	•	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	26.0	26.0		26.0	26.0	21.0	21.0	53.0		21.0	53.0	
Total Split (%)	26.0%	26.0%		26.0%	26.0%	21.0%	21.0%	53.0%		21.0%	53.0%	
Maximum Green (s)	21.0	21.0		21.0	21.0	16.0	16.0	47.0		16.0	47.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		16.6			16.6	37.6		53.4		17.0	74.4	
Actuated g/C Ratio		0.17			0.17	0.38		0.53		0.17	0.74	
v/c Ratio		0.02			0.64	0.13		0.58		0.24	0.53	
Control Delay		0.1			49.9	4.3		17.7		37.2	6.8	
Queue Delay		0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay		0.1			49.9	4.3		17.7		37.2	6.8	
LOS		Α			D	Α		В		D	Α	
Approach Delay		0.1			34.2			17.7			9.6	
Approach LOS		Α			С			В			Α	
90th %ile Green (s)	21.0	21.0		21.0	21.0	16.0	0.0	47.0		16.0	68.0	
90th %ile Term Code	Hold	Hold		Max	Max	Hold	Skip	Coord		Hold	Coord	
70th %ile Green (s)	18.3	18.3		18.3	18.3	16.0	0.0	49.7		16.0	70.7	
70th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
50th %ile Green (s)	15.8	15.8		15.8	15.8	16.0	0.0	52.2		16.0	73.2	
50th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	13.2	13.2		13.2	13.2	16.0	0.0	54.8		16.0	75.8	
30th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	9.5	9.5		9.5	9.5	16.0	0.0	58.5		16.0	79.5	
10th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
Queue Length 50th (ft)		0		1	97	0		235		40	171	
Queue Length 95th (ft)		0			155	26		336		68	268	
Internal Link Dist (ft)		338			260			186			439	
Turn Bay Length (ft)		000								240	.07	
Base Capacity (vph)		481			335	660		1906		589	2660	
Starvation Cap Reductn		0			0	0		0		0	0	
Spillback Cap Reductn		0			0	0		0		0	0	
Storage Cap Reductn		0			0	0		0		0	0	
Reduced v/c Ratio		0.02			0.48	0.13		0.58		0.24	0.53	
Intersection Summary												

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 100


Offset: 91 (91%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated

Intersection Signal Delay: 14.7 Intersection Capacity Utilization 68.6% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service C

Splits and Phases: 1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway

Intersection						
Int Delay, s/veh	3.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WBL	WDIN	† ∱	NDI	JDL	- 3D1 - 4 ↑
Traffic Vol, veh/h	T 9	148	T₽ 1058	5	70	4 T 1476
Future Vol, veh/h	9	148	1058	5	70	1476
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	0	1	1	0	2	1
Mvmt Flow	9	154	1102	5	73	1538
Major/Minor	Minor1	,	Major1	ı	Maiora	
	Minor1		Major1		Major2	^
Conflicting Flow All	2020	554	0	0	1107	0
Stage 1	1105	-	-	-	-	-
Stage 2	915	-	-	-	-	-
Critical Hdwy	6.8	6.92	-	-	4.14	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.31	-	-	2.22	-
Pot Cap-1 Maneuver	52	479	-	-	626	-
Stage 1	283	-	-	-	-	-
Stage 2	356	_	_	_	_	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	10	479	_	_	626	_
Mov Cap 1 Maneuver	65		_	_	-	_
Stage 1	283	-	-	-	-	-
		-	-	-	-	-
Stage 2	71	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.9		0		4.5	
HCM LOS	C		,			
	0					
					_	
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	351	626	-
HCM Lane V/C Ratio		-	-	0.466	0.116	-
HCM Control Delay (s))	-	-	23.9	11.5	4.2
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh))	_	_	2.4	0.4	-
	,			1	3.1	

Interception													
Intersection Int Delay, s/veh	3												
•		CDT	EDD	WDI	WDT	WDD	NDI	NDT	NDD	CDI	CDT	CDD	
Movement Configurations	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	4.4	₹ }	4	1	€1	2	20	4	0	2	4	40	
Traffic Vol, veh/h Future Vol, veh/h	66 66	193 193	4 4	1 1	146 146	2	20 20	1 1	0	2	0	69 69	
· · · · · · · · · · · · · · · · · · ·	0	193	0	0	0	0	0	0	0	0	0	09	
Conflicting Peds, #/hr Sign Control	Free	Free	Free	Free	Free	Free		Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	riee	None	riee -	-	None	Stop -	Siup	None	310p	Siup -	None	
Storage Length	-	-	None	-	-	None	-	-	NONE	-	-	NOHE	
eh in Median Storage	.# -	0	-	-	0	-	-	0	_	-	0	_	
Grade, %	, π -	0	_	_	0	_	_	0	_	_	0	_	
eak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86	
leavy Vehicles, %	0	2	0	0	1	0	0	0	0	0	0	0	
Nomt Flow	77	224	5	1	170	2	23	1	0	2	0	80	
IVIIIL I IOVV	, ,	227	J	'	170	_	2,5	1	U	۷	U	00	
lajor/Minor N	Major1		N	Major2		N	Minor1		N	/linor2			
conflicting Flow All	172	0	0	229	0	0	468	555	115	440	556	86	
Stage 1	-	-	-	-	-	-	381	381	-	173	173	-	
Stage 2	_	_	-	_	_	-	87	174	_	267	383	_	
tical Hdwy	4.1	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	6.9	
tical Hdwy Stg 1	-	_	_	-	_	_	6.5	5.5	-	6.5	5.5	-	
tical Hdwy Stg 2	_	_	_	-	_	-	6.5	5.5	_	6.5	5.5	_	
llow-up Hdwy	2.2	_	-	2.2	_	-	3.5	4	3.3	3.5	4	3.3	
t Cap-1 Maneuver	1417	-	-	1351	-	-	483	443	922	505	442	962	
Stage 1	-	-	-	-	-	-	619	617	_	818	760	_	
Stage 2	-	-	-	-	-	-	917	759	_	721	616	_	
atoon blocked, %		-	-		-	-							
ov Cap-1 Maneuver	1417	-	-	1351	-	-	422	415	922	480	414	962	
ov Cap-2 Maneuver	-	-	-	-	-	-	422	415	-	480	414	-	
Stage 1	-	-	-	-	-	-	581	579	-	767	759	-	
Stage 2	-	-	-	-	-	-	840	758	-	675	578	-	
				1475			NID			65			
pproach	EB			WB			NB			SB			
CM Control Delay, s	2			0.1			14.1			9.2			
CM LOS							В			Α			
linor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		422	1417	_	-	1351	-	-	936				
ICM Lane V/C Ratio		0.058		_	_	0.001	_	_	0.088				
ICM Control Delay (s)		14.1	7.7	0.1	_	7.7	0	_	9.2				
ICM Lane LOS		В	Α	Α	_	Α	Ā	_	A				
ICM 95th %tile Q(veh))	0.2	0.2	-	-	0	-	-	0.3				

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway Saturday Midday Peak Hour

	۶	→	•	•	←	•	•	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	ሻ	∱ }		ሻሻ	↑ ↑	
Traffic Volume (vph)	1	1	2	132	0	139	3	1267	182	224	1252	1
Future Volume (vph)	1	1	2	132	0	139	3	1267	182	224	1252	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0	• •	0	0		0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25		O	25			25		O	25		O
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt	1.00	0.932	1.00	1.00	1.00	0.850	1.00	0.981	0.75	0.77	0.75	0.75
Flt Protected		0.988			0.950	0.000	0.950	0.701		0.950		
Satd. Flow (prot)	0	1866	0	0	1906	1583	1925	3506	0	3467	3574	0
Flt Permitted	U	0.945	U	U	0.755	1303	0.950	3300	U	0.950	3374	U
Satd. Flow (perm)	0	1785	0	0	1515	1583	1925	3506	0	3467	3574	0
Right Turn on Red	U	1703	Yes	U	1313	Yes	1723	3300	Yes	3407	3374	Yes
Satd. Flow (RTOR)		2	163			92		26	163			163
Link Speed (mph)		30			30	92		40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	0.97	0.97	0.97	1%	0.97	2%	0.97	1%	1%	1%	1%	0.97
• • •	1	0% 1	2	136	0%	143	3	1306	188	231	1291	1
Adj. Flow (vph) Shared Lane Traffic (%)	ı	1	Z	130	U	143	3	1300	100	231	1291	ı
• ,	0	1	0	0	136	143	3	1494	0	231	1292	0
Lane Group Flow (vph) Enter Blocked Intersection	No	4 No	No	No	No	143 No	No	1494 No	No	231 No	1292 No	No
	Left	Left		Left				Left		Left	Left	
Lane Alignment Median Width(ft)	Len		Right	Len	Left 0	Right	Left	24	Right	Len	24	Right
Link Offset(ft)		0 0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
* *		10			10			10			Yes	
Two way Left Turn Lane Headway Factor	0.92	0.92	0.92	0.92	0.92	1.00	0.92	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	0.92	0.92	15	0.92	9	15	1.00	1.00	1.00	1.00	9
Number of Detectors	15	1	9	13	1	1	13	1	9	15	1	9
Detector Template	ı	1		ı	ı	ı	ı	1		I	1	
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	0 50	50	50		50	50	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	CI+EX	CI+EX		CI+EX	CI+EX	CI+EX	CI+EX	CI+EX		CI+EX	CI+EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
	0.0				0.0	0.0		0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)		0.0			0.0		0.0 Drot				0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	A	4		0	8	1	5	2		1	6	
Permitted Phases	4	4		8	0	8	F	2		1	,	
Detector Phase	4	4		8	8	1	5	2		1	6	
Switch Phase Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	
Minimum Initial (s)	ŏ.U	ŏ.U		ŏ.U	შ. U	ŏ.U	ö.U	13.0		ŏ.U	U.C1	

 $\label{lem:model} \begin{tabular}{ll} MDM Transportation Consultants, Inc. \\ G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\1247 No Build SAT.syn \\ \end{tabular}$

	۶	→	•	•	•	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	22.0	22.0		22.0	22.0	17.0	17.0	56.0		17.0	56.0	
Total Split (%)	23.2%	23.2%		23.2%	23.2%	17.9%	17.9%	58.9%		17.9%	58.9%	
Maximum Green (s)	17.0	17.0		17.0	17.0	12.0	12.0	50.0		12.0	50.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		14.2			14.2	31.2	9.0	54.8		13.0	69.2	
Actuated g/C Ratio		0.15			0.15	0.33	0.09	0.58		0.14	0.73	
v/c Ratio		0.01			0.60	0.25	0.02	0.74		0.49	0.50	
Control Delay		26.2			48.3	9.8	39.3	17.9		41.8	7.6	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		26.2			48.3	9.8	39.3	17.9		41.8	7.6	
LOS		С			D	Α	D	В		D	Α	
Approach Delay		26.3			28.6			18.0			12.8	
Approach LOS		С			С			В			В	
90th %ile Green (s)	17.0	17.0		17.0	17.0	12.0	8.0	50.0		12.0	54.0	
90th %ile Term Code	Hold	Hold		Max	Max	Max	Min	Coord		Max	Coord	
70th %ile Green (s)	16.0	16.0		16.0	16.0	12.0	0.0	51.0		12.0	68.0	
70th %ile Term Code	Hold	Hold		Gap	Gap	Max	Skip	Coord		Max	Coord	
50th %ile Green (s)	13.7	13.7		13.7	13.7	12.0	0.0	53.3		12.0	70.3	
50th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	11.4	11.4		11.4	11.4	12.0	0.0	55.6		12.0	72.6	
30th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	8.1	8.1		8.1	8.1	12.0	0.0	58.9		12.0	75.9	
10th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
Queue Length 50th (ft)		1			77	21	2	323		67	131	
Queue Length 95th (ft)		10			133	60	11	448		105	317	
Internal Link Dist (ft)		338			260		000	186		0.40	439	
Turn Bay Length (ft)		220			207	F00	220	2022		240	0/01	
Base Capacity (vph)		339			287	582	263	2032		474	2601	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.01			0.47	0.25	0.01	0.74		0.49	0.50	

Intersection Summary

Area Type: Other

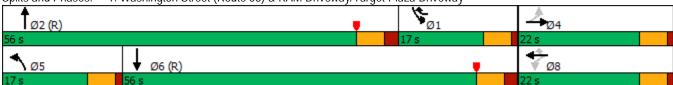
Cycle Length: 95

Actuated Cycle Length: 95

Offset: 90 (95%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated


Saturday Midday Peak Hour

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway

Intersection Signal Delay: 16.5 Intersection LOS: B Intersection Capacity Utilization 72.3%

Analysis Period (min) 15

Splits and Phases: 1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway

ICU Level of Service C

Intersection						
Int Delay, s/veh	6.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	WDIX	†	NDIX	ODL	41
Traffic Vol, veh/h	13	215	1406	9	100	1456
Future Vol, veh/h	13	215	1406	9	100	1456
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Siop	None	riee -	None	riee -	None
				NOHE	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	- 0.4	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	1	1	0	1	1
Mvmt Flow	14	229	1496	10	106	1549
Major/Minor I	Minor1	ı	Major1	N	Major2	
Conflicting Flow All	2488	753	0	0	1506	0
	1501	100	U	U	1000	U
Stage 1		-	-	-	-	-
Stage 2	987	- / 02	-	-	110	-
Critical Hdwy	6.8	6.92	-	-	4.12	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8		-	-	_	-
Follow-up Hdwy	3.5	3.31	-	-	2.21	-
Pot Cap-1 Maneuver	25	354	-	-	445	-
Stage 1	174	-	-	-	-	-
Stage 2	326	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	0	354	-	-	445	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	174	-	-	-	-	-
Stage 2	0	-	-	_	_	_
- · · · y -	,					
Approach	WB		NB		SB	
HCM Control Delay, s	34.6		0		7.5	
HCM LOS	54.0 D		J		1.5	
HOW LOJ	D					
Minor Lane/Major Mvm	nt	NBT	NBR\	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	354	445	-
HCM Lane V/C Ratio		-	-	0.685	0.239	-
HCM Control Delay (s)		-	-	34.6	15.6	6.9
HCM Lane LOS		-	-	D	С	Α
HCM 95th %tile Q(veh))	_	_	4.8	0.9	-
	,			1.5	3.7	

Intersection												
Int Delay, s/veh	3.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€Î}			414			4			4	
Traffic Vol, veh/h	112	286	6	0	156	6	7	2	0	16	2	109
Future Vol, veh/h	112	286	6	0	156	6	7	2	0	16	2	109
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	_	None	_	_	None	-	-	None	-	-	None
Storage Length	_	_	_	_	_	_	_	_	_	_	_	-
Veh in Median Storage	e.# -	0	_	_	0	_	_	0	_	_	0	-
Grade, %	-	0	_	-	0	-	_	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	2	0	0	0	0	0	0	0
Mvmt Flow	126	321	7	0	175	7	8	2	0	18	2	122
			•	-		•	_	_	-		_	
Major/Minor N	Major1		1	Major2		ľ	Minor1		N	Minor2		
Conflicting Flow All	182	0	0	328	0	0	666	759	164	593	759	91
Stage 1		-	-	-	-	-	577	577	-	179	179	-
Stage 2	_	_	_	_	_	_	89	182	-	414	580	_
Critical Hdwy	4.1	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	6.9
Critical Hdwy Stg 1	-	_	_	-	_	_	6.5	5.5	-	6.5	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.5	5.5	_	6.5	5.5	_
Follow-up Hdwy	2.2	_	_	2.2	_	_	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1405	_	_	1243	_	_	349	338	858	393	338	955
Stage 1	- 100	_	_		_	_	474	505	-	811	755	-
Stage 2	_	_	_	_	_	_	914	753	_	592	503	_
Platoon blocked, %		_	_		_	_		. 00		J / L	500	
Mov Cap-1 Maneuver	1405	_	_	1243	_	_	277	301	858	358	301	955
Mov Cap-2 Maneuver	00	_	_		_	_	277	301	-	358	301	-
Stage 1	_	_	_	_	_	_	422	449	-	722	755	_
Stage 2	_	_	_	_	_	_	794	753	_	524	448	_
g · -												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.3			0			18.2			10.8		
HCM LOS				J			C			В		
····							J					
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		282	1405	_	_	1243	_		767			
HCM Lane V/C Ratio		0.036	0.09	_	_		_	_	0.186			
HCM Control Delay (s)		18.2	7.8	0.2	_	0	_	_	10.8			
HCM Lane LOS		C	7.0 A	Α	_	A	_	_	В			
HCM 95th %tile Q(veh))	0.1	0.3	-	_	0	_	_	0.7			
1101VI 70111 701110 Q(VOII)	,	0.1	0.5			J			0.7			

Lane Group		۶	→	•	•	•	*	4	†	~	1	ļ	4
Tarific Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)			4			र्स	7	*	* 13		44	* 13	
Future Volume (vph)	Traffic Volume (vph)	2		0	50					73			3
Ideal Flow (ryphy)		2	0	0		0	28	3	1007	73	82	596	
Lane Witth (fth)			1900	1900		1900		1900					1900
Storage Length (ft)				14									
Storage Lanes	. ,												
Taper Length (fft)										0			
Lame Utili. Factor	<u> </u>												
Fith Protected 0.950 0	,		1.00	1.00		1.00	1.00		0.95	0.95		0.95	0.95
Fit Protected 0,950 0,95										0.00	0.0.		0.00
Satid. Flow (prot) 0 1925 0 0 1851 1538 1925 3504 0 3400 3502 0 Fil Permitted 0 0.720 0 0.750 0.950 0.950 0.950 Satid. Flow (perm) 0 1452 0 0 1475 1538 1925 3504 0 3400 3502 0 Right Turn on Red 7 7 7 7 7 7 7 7 7			0.950			0.950	0.000	0.950	0.000		0.950	0.000	
Fit Permitted		0		0	0		1538		3504	0		3502	0
Satid. Flow (perm) 0 1459 79 1455 1538 1925 3504 0 3400 3502 70 1455 1458 1455 145	· ,	Ū		·	·		1000		0001	ŭ		0002	ŭ
Right Turn on Red Yes Yes Turn on Red Yes		0		0	0		1538		3504	0		3502	0
Said Flow (RTOR)	.,	·	1100		·	1110		1020	0001		0100	0002	
Link Distance (fmph)				100					14	100		1	100
Link Distance (ft)			30			30	100					=	
Travel Time (s) 9.5 7.7 7.7 4.5 8.8 8.8 Peak Hour Factor 0.90 <td> ,</td> <td></td>	,												
Peak Hour Factor 0.90 <td></td>													
Heavy Vehicles (%)	` '	0 90		0 00	0 00		0.90	0 00		0 90	n an		n an
Adj. Flow (vph)													
Shared Lane Traffic (%) Lane Group Flow (vph) 0	• ,												
Lane Group Flow (vph)		2	U	U	50	U	01	3	1113	01	31	002	3
Enter Blocked Intersection No No No No No No No		0	2	Λ	Λ	56	31	3	1200	0	91	665	0
Lene Alignment Left Left Right Left Right Left Right Left Left Right Left Left Right Median Width(ft) 0 0 0 0 0 0 0 0 0													
Median Width(ft) 0 0 24 24 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 0.92 0.92 0.92 0.92 0.92 1.00 0.92 1.00													
Link Offset(ft)	•	Leit		rtigiit	Leit		rtigitt	LGIL		rtigitt	LGIL		ragni
Crosswalk Width(fft) 16 16 16 16 16 16 16 Yes Headway Factor 0.92 0.92 0.92 0.92 0.92 1.00 0.92 1.00													
Two way Left Turn Lane Headway Factor 0.92 0.92 0.92 0.92 0.92 1.00 0.92 1.00	` '												
Headway Factor 0.92 0.92 0.92 0.92 0.92 1.00 0.92 1.00	` ,		10			10			10				
Turning Speed (mph) 15 9 15 10 10 10 10 11 2 2		0 92	0 92	0 92	0 92	0 92	1 00	0 92	1 00	1 00	1 00		1.00
Number of Detectors 1 2 2													

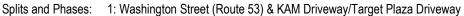
 $\label{lem:mdm} \begin{tabular}{ll} MDM Transportation Consultants, Inc. \\ G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\MR02\1247 Build AM.syn \\ \begin{tabular}{ll} AM.syn Build AM.syn Build AM.syn \\ \begin{tabular}{ll} AM.syn Build AM.syn \\ \begin{tabular}{ll} AM.syn Build AM.syn \\ \begin{tabular}{ll} AM.syn \\ \begin{tab$

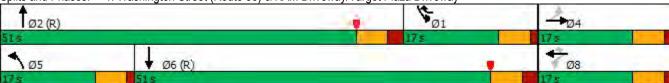
	۶	→	•	•	•	*	1	†	~	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	17.0	17.0		17.0	17.0	17.0	17.0	51.0		17.0	51.0	
Total Split (%)	20.0%	20.0%		20.0%	20.0%	20.0%	20.0%	60.0%		20.0%	60.0%	
Maximum Green (s)	12.0	12.0		12.0	12.0	12.0	12.0	45.0		12.0	45.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		10.3			10.3	21.3	9.0	58.3		12.2	70.3	
Actuated g/C Ratio		0.12			0.12	0.25	0.11	0.69		0.14	0.83	
v/c Ratio		0.01			0.31	0.07	0.01	0.50		0.19	0.23	
Control Delay		31.5			38.4	0.3	34.3	10.3		32.6	3.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		31.5			38.4	0.3	34.3	10.3		32.6	3.9	
LOS		С			D	Α	С	В		С	Α	
Approach Delay		31.5			24.8			10.4			7.4	
Approach LOS		С			С			В			Α	
90th %ile Green (s)	12.0	12.0		12.0	12.0	12.0	8.0	45.0		12.0	49.0	
90th %ile Term Code	Hold	Hold		Max	Max	Hold	Min	Coord		Hold	Coord	
70th %ile Green (s)	10.0	10.0		10.0	10.0	12.0	0.0	47.0		12.0	64.0	
70th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
50th %ile Green (s)	8.6	8.6		8.6	8.6	12.0	0.0	48.4		12.0	65.4	
50th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	0.0	0.0		0.0	0.0	12.0	0.0	62.0		12.0	79.0	
30th %ile Term Code	Skip	Skip		Skip	Skip	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	0.0	0.0		0.0	0.0	0.0	0.0	79.0		0.0	79.0	
10th %ile Term Code	Skip	Skip		Skip	Skip	Skip	Skip	Coord		Skip	Coord	
Queue Length 50th (ft)		1			28	0	2	194		22	37	
Queue Length 95th (ft)		7			61	0	10	282		43	118	
Internal Link Dist (ft)		338			260		000	186		0.40	439	
Turn Bay Length (ft)		000			005	470	220	0.400		240	0005	
Base Capacity (vph)		223			225	476	294	2406		520	2895	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.01			0.25	0.07	0.01	0.50		0.17	0.23	

Intersection Summary

Area Type: Other

Cycle Length: 85


Actuated Cycle Length: 85


Offset: 11 (13%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 55

Control Type: Actuated-Coordinated

Intersection Signal Delay: 9.9 Intersection Capacity Utilization 54.3% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service A

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL.	***	1101	INDIN	ODL	41
Traffic Vol, veh/h	1	46	1007	12	65	679
Future Vol, veh/h	1	46	1007	12	65	679
Conflicting Peds, #/hr	0	0	0	0	00	0/9
Sign Control			Free	Free	Free	Free
RT Channelized	Stop	Stop				
	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	11	3	0	0	3
Mvmt Flow	1	52	1131	13	73	763
Major/Miner	Minor1		Major1	,	Maiaro	
	Minor1		Major1		Major2	
Conflicting Flow All	1666	572	0	0	1144	0
Stage 1	1138	-	-	-	-	-
Stage 2	528	-	-	-	-	-
Critical Hdwy	6.8	7.12	-	-	4.1	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.41	_	_	2.2	_
Pot Cap-1 Maneuver	89	441	_	_	618	_
Stage 1	272		_	_	-	_
Stage 2	562					
	302	-	-	-	-	-
Platoon blocked, %	74	444	-	-	C40	-
Mov Cap-1 Maneuver	71	441	-	-	618	-
Mov Cap-2 Maneuver	228	-	-	-	-	-
Stage 1	272	-	-	-	-	-
Stage 2	447	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.5		0		1.9	
HCM LOS	14.0		J		1.5	
1 JOINI LOO	D					
Minor Lane/Major Mvm	nt	NBT	NBR\	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	432	618	_
HCM Lane V/C Ratio		_	_	0.122		_
HCM Control Delay (s)	١	_	_	14.5	11.6	1
HCM Lane LOS	,	_	_	14.5	В	A
	\	-	-			А
HCM 95th %tile Q(veh)	-	-	0.4	0.4	-

Internation													
Intersection Int Delay, s/veh	2.9												
•													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	0.5	41	4.4	^	47	^	•	4	^		4	44	
Traffic Vol, veh/h	35	109	11	0	33	0	3	0	0	1	0	41	
Future Vol, veh/h	35	109	11	0	33	0	3	0	0	1	0	41	
Conflicting Peds, #/hr	0	0 - Eroo	0	0 	0 Eroo	0 Eroo	O Cton	0	0	0	O Cton	0	
Sign Control RT Channelized	Free	Free	Free None	Free -	Free -	Free None	Stop	Stop -	Stop None	Stop	Stop	Stop None	
Storage Length	-	-	NOHE	-	-	None	-	-	None	-	-	NOHE	
/eh in Median Storage	.# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	,# -	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	73	73	73	73	73	73	73	73	73	73	73	73	
Heavy Vehicles, %	5	1	0	0	3	0	0	0	0	0	0	10	
Nymt Flow	48	149	15	0	45	0	4	0	0	1	0	56	
IVIIILI IOW	40	143	13	U	43	U	7	U	U		U	30	
lajor/Minor N	Major1		ı	Major2		ı	Minor1		N	/linor2			
Conflicting Flow All	45	0	0	164	0	0	276	298	82	216	305	23	
Stage 1	-	-	-	_	-	-	253	253	_	45	45	-	
Stage 2	-	-	_	_	-	_	23	45	_	171	260	-	
ritical Hdwy	4.2	-	-	4.1	-	_	7.5	6.5	6.9	7.5	6.5	7.1	
ritical Hdwy Stg 1	-	-	-	-	-	_	6.5	5.5	_	6.5	5.5	-	
itical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
ollow-up Hdwy	2.25	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.4	
ot Cap-1 Maneuver	1540	-	-	1427	-	-	660	617	968	727	612	1023	
Stage 1	-	-	-	-	-	-	735	701	-	969	861	-	
Stage 2	-	-	-	-	-	-	998	861	-	820	697	-	
latoon blocked, %		-	-		-	-							
lov Cap-1 Maneuver	1540	-	-	1427	-	-	608	596	968	708	591	1023	
Nov Cap-2 Maneuver	-	-	-	-	-	-	608	596	-	708	591	-	
Stage 1	-	-	-	-	-	-	710	677	-	936	861	-	
Stage 2	-	-	-	-	-	-	943	861	-	792	673	-	
nnroach	EB			WB			NB			SB			
pproach ICM Control Delay, s	1.7			0			11			8.8			_
ICM LOS	1.7			U			В			o.o A			
TOW LOS							Ь			А			
Minor Lane/Major Mvm	ıt l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		608	1540	-	-	1427	-	-	1012				
HCM Lane V/C Ratio		0.007		-	-	-	-	-	0.057				
HCM Control Delay (s)		11	7.4	0.1	_	0	-	-	8.8				
HCM Lane LOS		В	Α	Α	-	Α	-	-	Α				
HCM 95th %tile Q(veh))	0	0.1	-	-	0	-	-	0.2				
,													

	٠	→	•	•	•	•	4	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	٦	* 1>		44	* 1>	
Traffic Volume (vph)	5	0	3	175	0	88	0	971	119	142	1376	3
Future Volume (vph)	5	0	3	175	0	88	0	971	119	142	1376	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0		0	0		0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt		0.949				0.850		0.984				
Flt Protected		0.970			0.950					0.950		
Satd. Flow (prot)	0	1866	0	0	1925	1615	2027	3552	0	3467	3574	0
Flt Permitted	•	0.855	•	· ·	0.752				·	0.950	•••	·
Satd. Flow (perm)	0	1644	0	0	1524	1615	2027	3552	0	3467	3574	0
Right Turn on Red	•		Yes	•		Yes			Yes	0.0.	•••	Yes
Satd. Flow (RTOR)		153				87		18				
Link Speed (mph)		30			30	O.		40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	0%
Adj. Flow (vph)	5	0	3	179	0	90	0	991	121	145	1404	3
Shared Lane Traffic (%)	ŭ	ŭ	Ū		ŭ		ŭ	001		1.10		ŭ
Lane Group Flow (vph)	0	8	0	0	179	90	0	1112	0	145	1407	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											Yes	
Headway Factor	0.92	0.92	0.92	0.92	0.92	1.00	0.92	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1	1	1	1		1	1	
Detector Template												
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	50	50	50		50	50	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases		4			8	1	5	2		1	6	
Permitted Phases	4			8		8						
Detector Phase	4	4		8	8	1	5	2		1	6	
Switch Phase				-	-		-					
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	

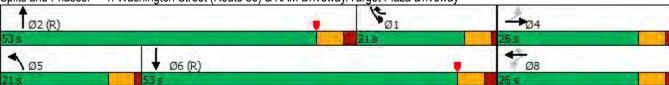
 $\label{lem:mdm} \begin{tabular}{ll} MDM Transportation Consultants, Inc. \\ G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\MR02\1247 Build PM.synchro\MR02\1247 Build PM.synch$

	•	→	•	•	←	*	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	26.0	26.0		26.0	26.0	21.0	21.0	53.0		21.0	53.0	
Total Split (%)	26.0%	26.0%		26.0%	26.0%	21.0%	21.0%	53.0%		21.0%	53.0%	
Maximum Green (s)	21.0	21.0		21.0	21.0	16.0	16.0	47.0		16.0	47.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		17.4			17.4	38.4		52.6		17.0	73.6	
Actuated g/C Ratio		0.17			0.17	0.38		0.53		0.17	0.74	
v/c Ratio		0.02			0.68	0.13		0.59		0.25	0.53	
Control Delay		0.1			51.1	4.7		18.3		37.2	7.1	
Queue Delay		0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay		0.1			51.1	4.7		18.3		37.2	7.1	
LOS		Α			D	Α		В		D	Α	
Approach Delay		0.1			35.6			18.3			10.0	
Approach LOS		Α			D			В			Α	
90th %ile Green (s)	21.0	21.0		21.0	21.0	16.0	0.0	47.0		16.0	68.0	
90th %ile Term Code	Hold	Hold		Max	Max	Hold	Skip	Coord		Hold	Coord	
70th %ile Green (s)	19.6	19.6		19.6	19.6	16.0	0.0	48.4		16.0	69.4	
70th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
50th %ile Green (s)	16.9	16.9		16.9	16.9	16.0	0.0	51.1		16.0	72.1	
50th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	14.2	14.2		14.2	14.2	16.0	0.0	53.8		16.0	74.8	
30th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	10.3	10.3		10.3	10.3	16.0	0.0	57.7		16.0	78.7	
10th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
Queue Length 50th (ft)		0			107	1		243		41	177	
Queue Length 95th (ft)		0			172	29		337		70	264	
Internal Link Dist (ft)		338			260			186			439	
Turn Bay Length (ft)										240		
Base Capacity (vph)		481			335	673		1876		589	2630	
Starvation Cap Reductn		0			0	0		0		0	0	
Spillback Cap Reductn		0			0	0		0		0	0	
Storage Cap Reductn		0			0	0		0		0	0	
Reduced v/c Ratio		0.02			0.53	0.13		0.59		0.25	0.53	

Intersection Summary

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100


Offset: 91 (91%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 60

Control Type: Actuated-Coordinated

Intersection Signal Delay: 15.4 Intersection Capacity Utilization 69.6% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service C

4.2					
WRI	WRR	NRT	NRR	SRI	SBT
	וטייי		NDIX	ODL	41
	160		13	91	1467
					1467
					0
					Free
		-	ivone	-	None
	-	-	-	-	-
	-		-	-	0
0	-		-	-	0
96	96	96	96	96	96
0	1	1	0	2	1
9	167	1101	14		1528
J					
		Major1			
2062	558	0	0	1115	0
1108	-	-	-	-	-
954	-	-	_	_	_
	6.92	_	_	4.14	_
		_	_	-	_
		_	_	_	_
				2 22	
		-	-		-
		-	-	022	-
	-	-	-	-	-
339	-	-	-	-	-
		-	-		-
0	476	-	-	622	-
-	-	-	-	-	-
282	_	_	-	-	-
	_	_	_	_	_
J					
WR		NR		SB	
		U		5.7	
C					
nt	NBT	NBRV	VBLn1	SBL	SBT
nt	NBT -	NBRV -	VBLn1 476	SBL 622	SBT -
<u>nt</u>	NBT -	NBRV - -	476	622	
	NBT - -	NBRV - -	476 0.37	622 0.152	-
n <u>t</u>)	NBT - -	NBRV - - -	476 0.37 16.9	622 0.152 11.8	- - 5.3
	NBT - - - -	NBRV - - - -	476 0.37	622 0.152	-
	WBL 9 9 0 Stop 0 96 0 96 0 96 1108 954 6.8 5.8 5.8 3.5 48 282 339	WBL WBR 9 160 9 160 0 0 Stop Stop None 0 - 96 96 0 1 9 167 Minor1 1 2062 558 1108 - 954 - 6.8 6.92 5.8 - 5.8 - 3.5 3.31 48 476 282 - 339 - 0 476 - 282 - 0 - WB 16.9	WBL WBR NBT 9 160 1057 9 160 1057 0 0 0 Stop Free None - 0 - 0 96 96 96 0 1 1 9 167 1101 Minor1 Major1 2062 558 0 1108 - - 954 - - 6.8 6.92 - 5.8 - - 3.5 3.31 - 48 476 - 282 - - 0 476 - 282 - - 0 476 - 282 - - 0 - - 0 - - 0 - - 0 -	WBL WBR NBT NBR 9 160 1057 13 9 160 1057 13 0 0 0 0 Stop Stop Free Free - None - None - None 0 96 96 96 96 0 1 1 0 9 167 1101 14 Minor1 Major1 1 2062 558 0 0 1108 - 954 - 6.8 6.92 - 5.8 - 5.8 - 3.5 3.31 - 48 476 - 282 - - 0 476 - 282 - - 0 - -	WBL WBR NBT NBR SBL Y 160 1057 13 91 9 160 1057 13 91 0 0 0 0 0 Stop Stop Free Free Free None - None - 0 - - - 9 96 96 96 96 9 167 1101 14 95 Minor1 Major1 Major2 2062 558 0 0 1115 1108 - - - - 954 - - - - 954 - - - - 6.8 6.92 - 4.14 5.8 - - 5.8 - - - - - 3.5 3.31 - 2.22 48 <

Intersection													
Int Delay, s/veh	3.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		474			474			4			4		
raffic Vol, veh/h	73	193	4	1	146	2	20	1	0	2	0	91	
uture Vol, veh/h	73	193	4	1	146	2	20	1	0	2	0	91	
onflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
gn Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
T Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
orage Length	-	-	-	-	-	-	-	-	-	-	-	-	
eh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
rade, %	-	0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86	
leavy Vehicles, %	0	2	0	0	1	0	0	0	0	0	0	0	
vmt Flow	85	224	5	1	170	2	23	1	0	2	0	106	
Major/Minor M	1ajor1		<u> </u>	Major2		<u> </u>	Minor1		N	/linor2			
Conflicting Flow All	172	0	0	229	0	0	484	571	115	456	572	86	
Stage 1	-	-	-	-	-	-	397	397	-	173	173	-	
Stage 2	-	-	-	-	-	-	87	174	-	283	399	-	
ritical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9	
ritical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
ritical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
ollow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
ot Cap-1 Maneuver	1417	-	-	1351	-	-	470	434	922	492	433	962	
Stage 1	-	-	-	-	-	-	605	607	-	818	760	-	
Stage 2	-	-	-	-	-	-	917	759	-	706	606	-	
atoon blocked, %		-	-		-	-							
ov Cap-1 Maneuver	1417	-	-	1351	-	-	396	404	922	464	403	962	
ov Cap-2 Maneuver	-	-	-	-	-	-	396	404	-	464	403	-	
Stage 1	-	-	-	-	-	-	563	565	-	762	759	-	
Stage 2	-	-	-	-	-	-	815	758	-	656	564	-	
				14.5						0.5			
Approach	EB			WB			NB			SB			
ICM Control Delay, s	2.2			0.1			14.7			9.3			
ICM LOS							В			Α			
linor Lane/Major Mvmt	· 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
capacity (veh/h)		396	1417			1351			940				
CM Lane V/C Ratio		0.062	0.06	_	_	0.001	_	_	0.115				
ICM Control Delay (s)		14.7	7.7	0.2	_	7.7	0	_	9.3				
HCM Lane LOS		В	A	A	_	A	A	_	A				
HCM 95th %tile Q(veh)		0.2	0.2	-	_	0	-	_	0.4				
						-							

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway Saturday Midday Peak Hour

	۶	→	*	•	←	4	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	*	*		1/4	* 1>	
Traffic Volume (vph)	3	1	2	161	0	147	3	1270	187	230	1230	1
Future Volume (vph)	3	1	2	161	0	147	3	1270	187	230	1230	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	12	14	12	12	12	12	12
Storage Length (ft)	0	• • •	0	0	• • •	0	220		0	240		0
Storage Lanes	0		0	0		1	1		0	2		0
Taper Length (ft)	25		·	25			25		·	25		Ū
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.97	0.95	0.95
Frt	1.00	0.955	1.00	1.00	1.00	0.850	1.00	0.981	0.50	0.57	0.50	0.50
Flt Protected		0.976			0.950	0.000	0.950	0.501		0.950		
Satd. Flow (prot)	0	1889	0	0	1906	1583	1925	3506	0	3467	3574	0
Flt Permitted	U	0.885	U	U	0.754	1303	0.950	3300	U	0.950	3374	U
Satd. Flow (perm)	0	1713	0	0	1513	1583	1925	3506	0	3467	3574	0
Right Turn on Red	U	17 13	Yes	U	1313	Yes	1323	3300	Yes	J 4 01	3374	Yes
Satd. Flow (RTOR)		2	163			92		26	163			163
Link Speed (mph)		30			30	92		40			40	
Link Distance (ft)		418			340			266			519	
Travel Time (s)		9.5			7.7			4.5			8.8	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	1%	0.97	2%	0.97	1%	1%	1%	1%	0.97
Heavy Vehicles (%)	3	1	2	166	0%	152	3	1309	193	237	1268	1
Adj. Flow (vph)	3		2	100	U	132	3	1309	193	231	1200	ı
Shared Lane Traffic (%) Lane Group Flow (vph)	0	6	0	0	166	152	3	1502	0	237	1269	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left		Left				Left		Left	Left	
Median Width(ft)	Leit	0	Right	Leit	Left	Right	Left	24	Right	Leit	24	Right
Link Offset(ft)		0			0			0			0	
` ,		16			16			16			16	
Crosswalk Width(ft)		10			10			10			Yes	
Two way Left Turn Lane Headway Factor	0.92	0.92	0.92	0.92	0.92	1.00	0.92	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	0.92	0.92	15	0.92	9	15	1.00	9	1.00	1.00	9
Number of Detectors	13	1	9	13	1	1	13	1	9	13	1	9
Detector Template	1			ı	ı	ı	I	1		ı	1	
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0		0	0	0	0	0		0	0	
Detector 1 Size(ft)	50	50		50	50	50	50	50		50	50	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel	UI+EX	UI+EX		CI+EX	CI+EX	CI+EX	CI+EX	CI+EX		CI+EX	CI+EX	
	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0			0.0	0.0		0.0		0.0		
Detector 1 Queue (s)	0.0	0.0		0.0 0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)							0.0				0.0	
Turn Type	Perm	NA		Perm	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	4	4		0	8	1	5	2		1	6	
Permitted Phases	4	4		8	0	8	_	0		4	^	
Detector Phase	4	4		8	8	1	5	2		1	6	
Switch Phase	0.0	0.0		0.0	0.0	0.0	0.0	15.0		0.0	15.0	
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	15.0		8.0	15.0	

MDM Transportation Consultants, Inc.

G:\Projects\1247 - Hanover (Katzen_Restaurant)\Synchro\MR02\1247 Build SAT.syn

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway Saturday Midday Peak Hour

	۶	→	•	•	←	•	4	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	13.0	13.0		13.0	13.0	13.0	13.0	21.0		13.0	21.0	
Total Split (s)	22.0	22.0		22.0	22.0	17.0	17.0	56.0		17.0	56.0	
Total Split (%)	23.2%	23.2%		23.2%	23.2%	17.9%	17.9%	58.9%		17.9%	58.9%	
Maximum Green (s)	17.0	17.0		17.0	17.0	12.0	12.0	50.0		12.0	50.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	2.0		1.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		4.0			4.0	4.0	4.0	5.0		4.0	5.0	
Lead/Lag						Lag	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)		15.4			15.4	32.4	9.0	53.6		13.0	68.0	
Actuated g/C Ratio		0.16			0.16	0.34	0.09	0.56		0.14	0.72	
v/c Ratio		0.02			0.68	0.25	0.02	0.76		0.50	0.50	
Control Delay		27.5			51.4	10.3	39.3	19.1		42.1	7.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		27.5			51.4	10.3	39.3	19.1		42.1	7.9	
LOS		С			D	В	D	В		D	Α	
Approach Delay		27.5			31.7			19.1			13.3	
Approach LOS		С			С			В			В	
90th %ile Green (s)	17.0	17.0		17.0	17.0	12.0	8.0	50.0		12.0	54.0	
90th %ile Term Code	Hold	Hold		Max	Max	Max	Min	Coord		Max	Coord	
70th %ile Green (s)	17.0	17.0		17.0	17.0	12.0	0.0	50.0		12.0	67.0	
70th %ile Term Code	Hold	Hold		Max	Max	Max	Skip	Coord		Max	Coord	
50th %ile Green (s)	15.6	15.6		15.6	15.6	12.0	0.0	51.4		12.0	68.4	
50th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
30th %ile Green (s)	13.0	13.0		13.0	13.0	12.0	0.0	54.0		12.0	71.0	
30th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
10th %ile Green (s)	9.4	9.4		9.4	9.4	12.0	0.0	57.6		12.0	74.6	
10th %ile Term Code	Hold	Hold		Gap	Gap	Hold	Skip	Coord		Hold	Coord	
Queue Length 50th (ft)		2			94	24	2	344		69	141	
Queue Length 95th (ft)		13			159	65	11	453		107	309	
Internal Link Dist (ft)		338			260			186			439	
Turn Bay Length (ft)							220			240		
Base Capacity (vph)		326			286	600	263	1989		474	2558	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.02			0.58	0.25	0.01	0.76		0.50	0.50	
Intersection Cummers												

Intersection Summary

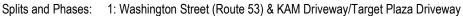
Area Type: Other

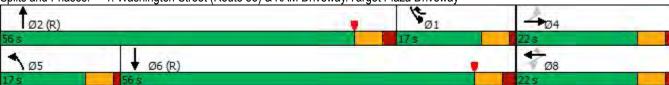
Cycle Length: 95

Actuated Cycle Length: 95

Offset: 90 (95%), Referenced to phase 2:NBT and 6:SBT, Start of Yellow

Natural Cycle: 60


Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.76

1: Washington Street (Route 53) & KAM Driveway/Target Plaza Driveway

Saturday Midday Peak Hour

Intersection Signal Delay: 17.7 Intersection Capacity Utilization 74.2% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service D

Intersection						
Int Delay, s/veh	7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		*			414
Traffic Vol, veh/h	13	235	1404	22	136	1440
Future Vol, veh/h	13	235	1404	22	136	1440
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	·-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 2	-	0	-	-	0
Grade, %	0	-	0	_	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	1	1	0	1	1
Mvmt Flow	14	250	1494	23	145	1532
WWW.CT IOW		200		20	110	1002
NA . ' . /NA'	Mr. 4					
	Minor1		Major1		Major2	
Conflicting Flow All	2562	759	0	0	1517	0
Stage 1	1506	-	-	-	-	-
Stage 2	1056	-	-	-	_	-
Critical Hdwy	6.8	6.92	-	-	4.12	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.31	-	-	2.21	-
Pot Cap-1 Maneuver	22	351	-	-	441	-
Stage 1	173	-	-	-	-	-
Stage 2	300	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	0	351	_	_	441	_
Mov Cap-2 Maneuver	-	-	_	_	-	_
Stage 1	173	_	_	_	_	_
Stage 2	0	_	_	_	_	_
Clayo 2	J					
Approach	WB		NB		SB	
HCM Control Delay, s	40.6		0		8.1	
HCM LOS	40.0 E		J		J. 1	
TOW LOO	_					
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)				351	441	
HCM Lane V/C Ratio		_		0.752		_
HCM Control Delay (s)		_	_	40.6	17.1	7.2
HCM Lane LOS		_		40.0 E	17.1	Α.Α
HCM 95th %tile Q(veh)		-	-	5.9	1.4	- -
HOW JOHN JOHN W(VEII)	1	-	-	5.5	1.4	-

ntersection													
nt Delay, s/veh	4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		474			44			4			4		
raffic Vol, veh/h	123	286	6	0	156	6	7	2	0	16	2	146	
iture Vol, veh/h	123	286	6	0	156	6	7	2	0	16	2	146	
onflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
n Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
Channelized	-	-	None	-	-	None	·-	· -	None	· -	· -	None .	
rage Length	-	-	-	-	-	-	-	-	-	-	-	-	
n in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
ide, %	-	0	-	-	0	-	-	0	-	-	0	-	
k Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89	
avy Vehicles, %	0	0	0	0	2	0	0	0	0	0	0	0	
nt Flow	138	321	7	0	175	7	8	2	0	18	2	164	
or/Minor N	/lajor1		N	Major2		N	Minor1		N	Minor2			
nflicting Flow All	182	0	0	328	0	0	690	783	164	617	783	91	
Stage 1	102	-	U	520	-	-	601	601	104	179	179	91	
Stage 1	<u>-</u>	-	<u>-</u>	-	<u>-</u>	-	89	182	-	438	604	-	
ical Hdwy	4.1	_	_	4.1	_	_	7.5	6.5	6.9	7.5	6.5	6.9	
cal Hdwy Stg 1	4.1	_	_	4.1	-	_	6.5	5.5	0.5	6.5	5.5	0.5	
ical Hdwy Stg 2	_	_	_	_	_	_	6.5	5.5	-	6.5	5.5	-	
low-up Hdwy	2.2	_	_	2.2	_	_	3.5	4	3.3	3.5	4	3.3	
: Cap-1 Maneuver	1405	_	_	1243		_	335	328	858	378	328	955	
Stage 1	1405	_	_	1240	_	_	459	493	-	811	755	333	
Stage 2	_	_	_	_	_	_	914	753	_	573	491	_	
atoon blocked, %		_	_		_	_	J 1 T	100		010	701		
v Cap-1 Maneuver	1405	_	_	1243	_	_	251	289	858	341	289	955	
ov Cap-2 Maneuver	-	_	_		_	_	251	289	-	341	289	-	
Stage 1	_	_	_	_	_	_	404	434	_	714	755	_	
Stage 2	-	-	-	-	-	-	755	753	-	502	432	-	
proach	EB			WB			NB			SB			
CM Control Delay, s	2.5			0			19.5			10.9			
CM LOS	۷.5			U			19.5 C			В			
LOO							J			U			
nor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
apacity (veh/h)		259	1405	-	-	1243	-	-	793				
CM Lane V/C Ratio			0.098	-	-	-	-	-	0.232				
CM Control Delay (s)		19.5	7.8	0.3	-	0	-	-	10.9				
CM Lane LOS		С	Α	Α	-	Α	-	-	В				
CM 95th %tile Q(veh)		0.1	0.3	-	-	0	-	-	0.9				

□ Drive-Thru Queue Calculations

Taco Bell (And KFC) Spot count

Hudson, MA 282 Washington Street Job # 1247

282 Washington Wednesday, October 11th, 2023

Weekday Morning This Location opens at 10:00 AM

VVCCRuay	TIVIOTTIIII	TITIS EOCULIOTI (opens at 10.00 Aivi	
	Entering	Exiting	Used Drive-Thru	% Drive-Thru
TOTAL				

Weekday Midday

Date:

	Entering	Exiting	Used Drive-Thru	% Drive-Thru
12:00 PM	20	15	14	70%
12:15 PM	16	14	12	75%
12:30 PM	19	16	13	68%
12:45 PM	11	17	8	73%
TOTAL	66	62	47	71%

Weekday Evening

	Entering	Exiting	Used Drive-Thru	% Drive-Thru
5:00 PM	10	7	7	70%
5:15 PM	17	13	8	47%
5:30 PM	5	6	4	80%
5:45 PM	12	12	7	58%
TOTAL	44	38	26	59%

Date: Saturday, October 14th, 2023

Saturday Midday

	Entering	Exiting	Used Drive-Thru	% Drive-Thru
12:00 PM	7	6	5	71%
12:15 PM	15	9	10	67%
12:30 PM	12	15	5	42%
12:45 PM	12	12	5	42%
TOTAL	46	42	25	54%

	Legend		
Code	Description	Gross Area	Living Area
AS	First Floor	2,563	2,563

Hours

^	Taco Bell	
	Tuesday	10 AM-12 AM
	Wednesday	10 AM-12 AM
	Thursday	10 AM-12 AM
	Friday	10 AM-1 AM
	Saturday	10 AM-1 AM
	Sunday	10 AM-12 AM
	Monday	10 AM-12 AM
	Suggest new hours	
~	Drive through	10 AM-12 AM

12:00 PM to 12:15 PM - Drive Thru Window Processing Time

2,583

2,563

Car		Time (seconds)
1		16
2		53
3		35
4		43
5		30
6		25
7		42
8		41
9		129
10		54
11		20
12		24
13		51
14		45
	AVERAGE:	43.4 seconds

Proposed Drive-Through Queue Analysis: Taco Bell Route 53 - Hanover, MA

Period: Input Rate (q) Service Rate (u) No. Servers k	Weekday I 32 90 1 100	Morning Pea Vehicles/h Vehicles/h	our	0.67	Minutes/Vehicle
<u>n</u>	<u>p(n)</u>	<u>Cdist</u>			
0	0.644444	-			
1	0.229136	0.87	Avg Q		
2	0.081471	0.96	Max Q		
3	0.028967	0.98			
4	0.010299	0.99			
5	0.003662	1.00			
6	0.001302	1.00			
7	0.000463	1.00			
8	0.000165	1.00			
9	5.85E-05	1.00			
10	2.08E-05	1.00			
11	7.4E-06	1.00			
12	2.63E-06	1.00			
13	9.35E-07	1.00			
14	3.33E-07	1.00			
15	1.18E-07	1.00			
16	4.2E-08	1.00			
17	1.49E-08	1.00			
18	5.32E-09	1.00			

n = Number of Queued Vehicles

P(n)= probability of n queued vehicles

1.89E-09

6.72E-10

Cdist= Cumulative probability of n queued vehicles or less

Assumptions

19

20

1. Average customer service time is based on empirical data for 282 Washington Street, Hudson Taco Bell (and KFC).

1.00

1.00

- 2. Average arrival for peak hour is based on entering trip generation and drivethrough percentage for 282 Washington Street, Hudson Taco Bell. (and KFC).
- 3. Queuing algorithm based on M/M/S model, per Introduction to Operations Research, 6th Ed., Hillier & Lieberman, 1995 P. 686-689.

Proposed Drive-Through Queue Analysis: Taco Bell Route 53 - Hanover, MA

Period:	Weekday	Evening Peak Hour		
Input Rate (q)	24	Vehicles/hour		
Service Rate (u)	90	Vehicles/hour =	0.67	Minutes/Vehicle
No. Servers	1			
k	100			
n	n(n)	Cdist		

<u>n</u>	<u>p(n)</u>	<u>Cdist</u>	
0	0.733333	-	
1	0.195556	0.93	Avg Q
2	0.052148	0.98	Max Q
3	0.013906	0.99	
4	0.003708	1.00	
5	0.000989	1.00	
6	0.000264	1.00	
7	7.03E-05	1.00	
8	1.88E-05	1.00	
9	5E-06	1.00	
10	1.33E-06	1.00	
11	3.56E-07	1.00	
12	9.48E-08	1.00	
13	2.53E-08	1.00	
14	6.74E-09	1.00	
15	1.8E-09	1.00	
16	4.8E-10	1.00	
17	1.28E-10	1.00	
18	3.41E-11	1.00	
19	9.09E-12	1.00	
20	2.42E-12	1.00	

n = Number of Queued Vehicles

P(n)= probability of n queued vehicles

Cdist= Cumulative probability of n queued vehicles or less

Assumptions

- 1. Average customer service time is based on empirical data for 282 Washington Street, Hudson Taco Bell (and KFC).
- 2. Average arrival for peak hour is based on entering trip generation and drive-through percentage for 282 Washington Street, Hudson Taco Bell. (and KFC).
- 3. Queuing algorithm based on M/M/S model, per Introduction to Operations Research, 6th Ed., Hillier & Lieberman, 1995 P. 686-689.

Proposed Drive-Through Queue Analysis: Taco Bell Route 53 - Hanover, MA

Period:	Saturday	Midday Peak Hour		
Input Rate (q)	39	Vehicles/hour		
Service Rate (u)	90	Vehicles/hour =	0.67	Minutes/Vehicle
No. Servers	1			
k	100			
<u>n</u>	<u>p(n)</u>	<u>Cdist</u>		

<u>n</u>	<u>p(n)</u>	<u>Cdist</u>	
0	0.566667	-	
1	0.245556	0.81	Avg Q
2	0.106407	0.92	
3	0.04611	0.96	Max Q
4	0.019981	0.98	
5	0.008658	0.99	
6	0.003752	1.00	
7	0.001626	1.00	
8	0.000705	1.00	
9	0.000305	1.00	
10	0.000132	1.00	
11	5.73E-05	1.00	
12	2.48E-05	1.00	
13	1.08E-05	1.00	
14	4.66E-06	1.00	
15	2.02E-06	1.00	
16	8.76E-07	1.00	
17	3.8E-07	1.00	
18	1.64E-07	1.00	
19	7.13E-08	1.00	
20	3.09E-08	1.00	

n = Number of Queued Vehicles

P(n)= probability of n queued vehicles

Cdist= Cumulative probability of n queued vehicles or less

Assumptions

- 1. Average customer service time is based on empirical data for 282 Washington Street, Hudson Taco Bell (and KFC).
- 2. Average arrival for peak hour is based on entering trip generation and drive-through percentage for 282 Washington Street, Hudson Taco Bell. (and KFC).
- 3. Queuing algorithm based on M/M/S model, per Introduction to Operations Research, 6th Ed., Hillier & Lieberman, 1995 P. 686-689.

1247 Hanover Parking Count of Plaza Lot near Proposed Restaurant Location

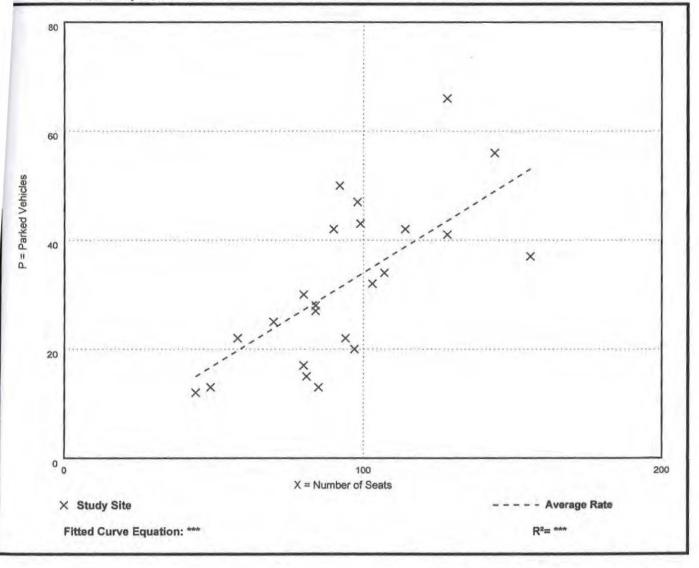
	Time	Zone 1	Zone 2	Zone 3			Zone 1	Zone 2	Zone 3			Zone 1	Zone 2	Zone 3
Thursday	12:00 AM	0	0	0	Friday	12:00 AM	2	0	0	Saturday	12:00 AM	0	0	0
11/17/2022		0	0	0	11/18/2022	1:00 AM	0	0	0	11/19/2022	1:00 AM	0	0	0
	2:00 AM	0	0	0		2:00 AM	0	0	0		2:00 AM	0	0	0
	3:00 AM	0	0	0		3:00 AM	0	0	0		3:00 AM	0	0	0
	4:00 AM	0	0	2		4:00 AM	0	0	0		4:00 AM	0	0	0
	5:00 AM	0	0	2		5:00 AM	0	0	0		5:00 AM	0	0	0
	6:00 AM	0	0	2		6:00 AM	0	0	0		6:00 AM	0	0	0
	7:00 AM	0	0	3		7:00 AM	0	0	0		7:00 AM	1	3	2
	8:00 AM	0	5	5		8:00 AM	0	5	3		8:00 AM	1	3	2
	9:00 AM	1	5	9		9:00 AM	1	7	4		9:00 AM	5	3	5
	10:00 AM	3	6	10		10:00 AM	3	7	10		10:00 AM	2	2	6
	11:00 AM	1	7	13		11:00 AM	0	8	11		11:00 AM	2	2	9
	12:00 PM	1	9	15		12:00 PM	0	8	12		12:00 PM	2	2	14
	1:00 PM	1	8	13		1:00 PM	2	8	11		1:00 PM	0	4	13
	2:00 PM	2	7	12		2:00 PM	0	5	11		2:00 PM	0	2	9
	3:00 PM	3	5	10		3:00 PM	0	0	11		3:00 PM	1	3	9
	4:00 PM	2	5	8		4:00 PM	2	1	15		4:00 PM	2	2	13
	5:00 PM	1	3	10		5:00 PM	2	1	8		5:00 PM	2	1	4
	6:00 PM	1	0	9		6:00 PM	2	0	5		6:00 PM	2	1	1
	7:00 PM	1	0	5		7:00 PM	2	1	4		7:00 PM	1	1	0
	8:00 PM	1	0	4		8:00 PM	2	1	2		8:00 PM	1	1	1
	9:00 PM	1	0	3		9:00 PM	1	1	1		9:00 PM	2	0	0
	10:00 PM	0	0	0		10:00 PM	1	0	0		10:00 PM	2	0	0
	11:00 PM	0	0	0		11:00 PM	0	0	0		11:00 PM	2	0	0
	Supply	34	34	51		Supply	34	34	51		Supply	34	34	51

ast-Food Restaurant with Drive-Through Window (934)

Peak Period Parking Demand vs: Seats

On a: Weekday (Monday - Thursday)

Setting/Location: General Urban/Suburban


Peak Period of Parking Demand: 12:00 - 1:00 p.m.

Number of Studies: 23 Avg. Num. of Seats: 94

ak Period Parking Demand per Seat

Average Rate	Range of Rates	33rd / 85th Percentile	95% Confidence Interval	Standard Deviation (Coeff. of Variation)
0.34	0.15 - 0.54	0.27 / 0.47	0.30 - 0.38	0.11 (32%)

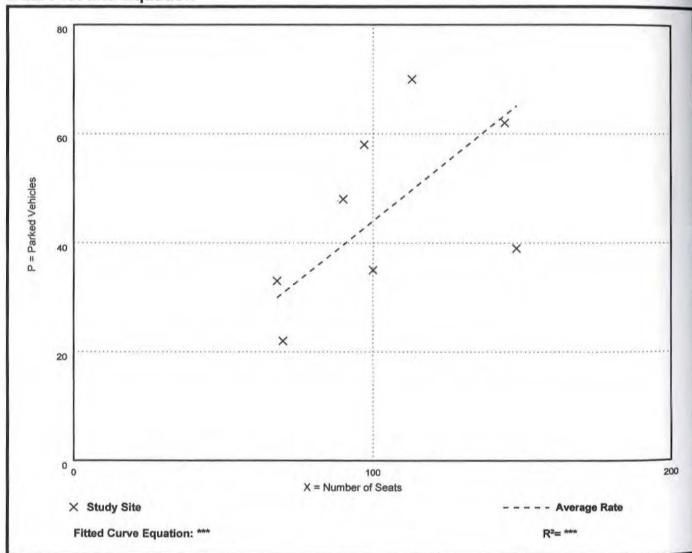
ata Plot and Equation

Fast-Food Restaurant with Drive-Through Window (934)

Peak Period Parking Demand vs: Seats

On a: Friday

Setting/Location: General Urban/Suburban


Peak Period of Parking Demand: 12:00 - 1:00 p.m.

Number of Studies: 8 Avg. Num. of Seats: 104

Peak Period Parking Demand per Seat

Average Rate	Range of Rates	33rd / 85th Percentile	95% Confidence Interval	Standard Deviation (Coeff. of Variation)
0.44	0.26 - 0.62	0.35 / 0.61	***	0.14 (32%)

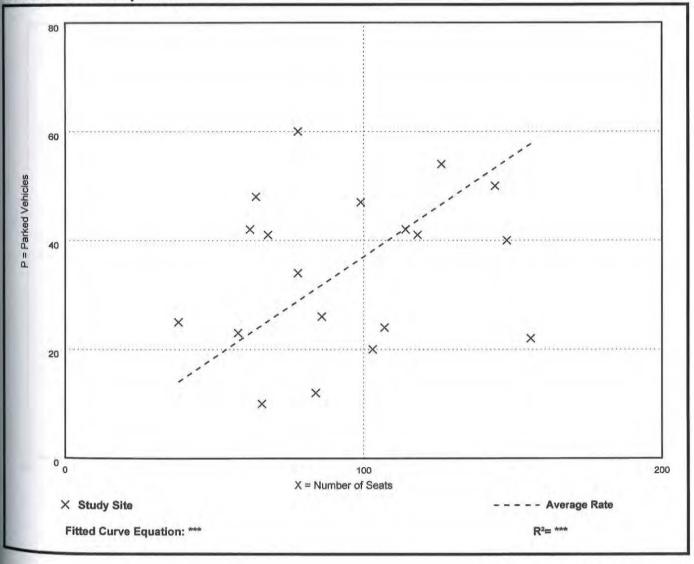
Data Plot and Equation

Fast-Food Restaurant with Drive-Through Window (934)

Peak Period Parking Demand vs: Seats

On a: Saturday

Setting/Location: General Urban/Suburban


Peak Period of Parking Demand: 12:00 - 2:00 p.m.

Number of Studies: 19 Avg. Num. of Seats: 95

Peak Period Parking Demand per Seat

Average Rate	Range of Rates	33rd / 85th Percentile	95% Confidence Interval	Standard Deviation (Coeff. of Variation)
0.37	0.14 - 0.77	0.29 / 0.68	***	0.19 (51%)

Data Plot and Equation

